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Achieving determinism on real software systems remains diicult. Even a batch-processing job, whose task is
to map input bits to output bits, risks nondeterminism from thread scheduling, system calls, CPU instructions,
and leakage of environmental information such as date or CPU model. In this work, we present a system for
achieving low-overhead deterministic execution of batch-processing programs that read and write the ile
systemÐturning them into pure functions on iles.

We allow multi-process executions where a permissions system prevents races on the ile system. Pro-
cess separation enables diferent processes to enforce permissions and enforce determinism using distinct

mechanisms. Our prototype, DetFlow, allows a statically-typed coordinator process to use shared-memory
parallelism, as well as invoking process-trees of sandboxed legacy binaries. DetFlow currently implements
the coordinator as a Haskell program with a restricted I/O type for its main function: a new monad we call
DetIO. Legacy binaries launched by the coordinator run concurrently, but internally each process schedules
threads sequentially, allowing dynamic determinism-enforcement with predictably low overhead.

We evaluate DetFlow by applying it to bioinformatics data pipelines and software build systems. DetFlow
enables determinizing these data-processing worklows by porting a small amount of code to become a
statically-typed coordinator. This hybrid approach of static and dynamic determinism enforcement permits
freedom where possible but restrictions where necessary.
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1 INTRODUCTION

Using today’s technology, can we guarantee that a script or program will produce the same output
when run on two computers, even when identically conigured? Alas, we cannot. Deterministic
execution is not an abstraction ofered by today’s operating systems, virtual machines, or containers,
and academic work on deterministic execution either does not cover programs’ I/O behavior or
cannot run on commodity operating systems.
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Nondeterminism poses a fundamental challenge to reproducibility, frustrating software devel-
opment tasks such as debugging, testing, and reproducing defects from deployed software. The
reproducibility that determinism provides is instrumental to trustworthy software compilation and
providing repeatable scientiic results. While the nondeterminism inherent in parallel computation
is well-studied, achieving system-level reproducibility (including I/O) for even single-threaded
computations is a real-world challenge. For example, eforts like the Nix package manager [Nix
2015] and the Debian Reproducible Builds project [Debian Wiki 2016] share a goal of reproducible
software builds, but have made progress only through extensive human efort to manually identify
and remove sources of nondeterminism in the build.

Existing deterministic languages [Bocchino et al. 2009], runtime systems [Merriield et al. 2015;
Olszewski et al. 2009], and hardware architectures [Devietti et al. 2009; Hower et al. 2011] are of little
help with these real-world challenges as they operate within the process abstraction, focusing only
on nondeterminism arising from shared-memory interactions. Deterministic operating systems
[Aviram et al. 2010; Bergan et al. 2010; Hunt et al. 2013] can make interprocess communication
deterministic, but require a customOS that is often impractical to deploy.We introduce an alternative
approach embodied by a system which we call DetFlow. DetFlow’s key contribution is to
generalize deterministic guarantees beyond shared memory to include ilesystem interactions as
well, and to do so while running on existing commodity operating systems like Linux. DetFlow
provides a principled mechanism for achieving software reproducibility.

Rather than determinizing arbitrary multithreaded, shared-memory programs as previous work
has,DetFlow takes a two-level approach: a parallel coordinator allows shared-memory parallelism
but is strictly statically typed, whereas optional worker processes launched by the coordinator
run arbitrary, legacy x86 code. Arbitrary code requires dynamic determinism enforcement, but to
keep the overhead minimal and predictable, each individual worker runs sequentially. Parallelism
is thus supported in two ways: 1) within the coordinator (via multithreading) and 2) via multiple
workers running in parallel (via multiprocessing) whose side-efects are dynamically checked to
ensure non-interference. Parallelism within the coordinator is limited by the expressivity of static
typing. Recent research has shown how pipeline [Bocchino and Adve 2011] and some graph-based
algorithms [Kuper et al. 2014a,b] are expressible, but algorithms using schedule-dependent lock-free
synchronization would be very challenging to check statically for determinism. Sequential worker
execution rules out any intra-worker parallelism, but many real-world parallel batch processing
tasks, like software builds, use parallelism only at an outer level (e.g., building multiple source iles
in parallel) and not within each parallel task (e.g., each source ile is compiled sequentially).
DetFlow’s current implementation of coordinators leverages Haskell’s rich type system to

provide parallel access to shared memory and ilesystem resources in a safe and principled manner.
When these Haskell programs make calls to legacy programs, those programs run deterministically
via a lightweight runtime system that enforces deterministic serialization. Thus DetFlow draws on
techniques from both deterministic statically-typed languages (LVish, Deterministic Parallel Java,
etc.) and deterministic runtime systems, and we ind that this hybrid approach is well-suited to
executing real-world worklows with both good performance and reliable determinism guarantees.
This paper makes the following contributions:

• The irst system to use a hybrid approach of static and dynamic determinism enforcement.
• The DetIOmonad, the irst type for a main function which guarantees that everything in main,
including its I/O operations, executes deterministically (Section 3).
• An implementation of the DetFlow system that can run arbitrary legacy code in a determin-
istic way, and that leverages several Haskell features, such as the compiler’s Safe Haskell
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mode, and built-in lightweight threads, to obtain good parallel performance and scalability
(Section 4).
• Case studies that apply DetFlow to two diferent application domainsÐbioinformatics
pipelines and parallel build systemsÐand demonstrate that DetFlow provides strong de-
terminism guarantees with geomean performance overhead of 0.3% over eight applications
(Section 7).

2 BACKGROUND: PORTABILITY AND REPRODUCIBILITY ON X86 LINUX

As computer scientists, we naturally study programs as mathematical entities separate from any
machine that happens to run them. Yet real programs running on today’s hardware have access to
the details of the machine they’re running on, even if virtualized. While we may strive to make a
program repeatableÐyielding the same result across a class of machinesÐwe do so only as a soft
project goal. We fail to separate machine-speciic from portable (deterministic) information using a
hard abstraction boundaryÐunlike, say, memory isolation between processes, or the user/kernel
boundary.

One of the simplest ways to make a program inconsistently reproducible is through concurrency.
In concurrent programs, one particular detail of the machineÐits scheduling decisionsÐcan leak
into the program state and program outputs. Consider this Bash script:

#!/bin/bash

echo foo &

echo bar &

wait

The above program usually prints foo bar on Linux (kernel 4.8), but sometimes it prints in the
opposite order. Indeed, concurrency is the cause of many Makeile bugs, which are exposed when
running in parallel with make -j. We will return to the topic of deterministic software builds in
detail (Section 6.1).

It is also easy to expose information about the execution environment: the hardware or the time
and place of execution. In this paper we focus on primarily on Linux, and here is a Linux-speciic
example:

#!/bin/bash

date

ifconfig

cat /proc/cpuinfo

Of course, we may need the ability to gather this information. Unfortunately, contemporary systems
not only allow it, but treat it no diferently from other information in our program. As a result, we
can’t know whether any given byte of output is tainted by machine speciics or not. If inluxes
of non-portable, non-repeatable information were at least identiied, then the body of work on
information low control [Myers 1999; Myers and Liskov 1997, 2000] could be brought to bear.
Indeed, record-and-replay software [Devecsery et al. 2014; Mozilla 2015; Patil et al. 2010] is

precisely focused on identifying and recording the essential information from an execution in
order to reproduce it, separating it from deterministic information that can be recomputed. For
example, tools like Mozilla’s rr make it possible to replay entire process trees when debugging.
In fact, deterministic execution and record-and-replay are synergisticÐeven if a program isn’t
perfectly deterministic, increasing determinism can reduce the amount of information logged. Thus
nondeterminism is a spectrum, characterized by the rate at which information must be logged for
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reproduction. In this paper we focus on the extreme case: computations that process and produce
data with zero consumption of nondeterministic information.

Goal. We seek to enable practical software to run with the same outcome irrespective of time and
place: i.e. the same printed output and bitwise identical output iles. Examples include scripts that
run data-processing workloads, and software builds that transform sources into binaries. Further,
to achieve reasonable performance on today’s multicores, parallelism is a mandatory feature. For
instance, inside a build coniguration, we may compile source iles in parallel:

gcc -c foo.c &

gcc -c bar.c &

Designing new languages or type systems [Bocchino et al. 2009; Burckhardt et al. 2010; Kuper
et al. 2014b] can help the goal of deterministic parallel programming. But here we encounter a
limitation: we cannot, for instance, rewrite GCC in order to get deterministic builds. Thus, at some
level, we must also support call-outs to legacy software.

3 APPROACH

Now we deine in more detail what it means for a program to run deterministically in DetFlow.
We then describe the programming API exposed by DetFlow. This section covers user-visible
features, with the implementation deferred to Sections 4 and 5.

3.1 The Determinism Guarantee

We say that a deterministic program computes a pure function from a set of read-only directories on
disk, to a set of writable output directories (plus stdout). To simplify the exposition, our examples
use a single input and output directory, with the output directory initially empty. Here’s an example
of how to invoke a portable, deterministic program:

$ detflow -i in/ -o out/ Hello.hs

Reading in/hello.txt and writing out/hello.txt.

$ cat out/hello.txt

Hello world

The static contents of the program sourcesÐeither a single-ile script, like Hello.hs, or a whole
project directoryÐuniquely identify the pure function in question. This means the program sources
must be self-descriptive with respect to exact versions of compiler toolchains and library dependen-
cies. Fortunately, this is a solved problem; we can rely on existing łhermetic buildž technologies1.

The guarantee we provide is that on any x86 Linux machine where we run the above command
successfully2, the same input directory yields the same output directory contents and stdout. Indeed,
this notion of observable equivalence can easily be validated using a simple utility such as hashdeep
or diff. We guarantee determinism up to the bitwise contents of iles, and treat directories with
set semanticsÐinodes and the ordering of directory contents are abstracted away in this view.
Consequently, programs run with detflow must not be able to observe true system inode numbers
or directory orderings. For example, we sort directory contents by name before returning listings
to the user. We likewise hide ile timestamps, replacing them with constants, which prevents the
program from inferring time information from iles it has written.

To an external observer, the above source-only DetFlow program has only one valid execution,
which is the one deined by the restricted view of the system provided by DetFlow. If the example
program called out to legacy binaries (as in Figure 1), then the determinism guarantee holds but

1Such as the stack tool for Haskell (stackage.org) or the Nix package manager [Nix 2015].
2Note that the program may fail to run, for example with an out-of-memory error, which may difer between machines.
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#!/bin/bash

function compile () {

gcc -c $1

echo "Done compiling $1"

}

compile foo.c &

compile bar.c

wait

import Control.Monad.DetIO

compile x =

do system ("gcc -c " ++ x)

putStrLn ("Done compiling " ++ x)

main =

do a ← forkWPerms [R "foo.c", RW "foo.o"]

(compile "foo.c")

compile "bar.c"

joinThread a

Fig. 1. An example: compiling two files in parallel, in Bash (let) and using DetIO (right) to achieve statically-
checked deterministic parallelism. DetFlow determinizes the program on the let by sequentializing it,
whereas the program on the right can run in parallel, with (unobservable) nondeterministic OS scheduling. A
configuration file in the same directory would specify the version of the library ecosystem to use, e.g. łlts-8.6ž.

grows a bit more complicated. First, the program identity depends on read-only system-directories
as well as the script source code (system directories which are best controlled with containerization
technology). Second, the legacy binaries were originally created with the intent of nondeterministic
semantics, based on all the unspeciied and under-speciied behaviors in the language, the hardware,
and POSIX. In this case, DetFlow consistently selects the same valid execution among the set of
valid executions, on every invocation. For example, because directory order in POSIX ile systems
is undeined, always choosing an alphabetically sorted order is valid.

3.1.1 Avoiding Overly Fine Equivalence Classes. If a program’s exact identity depends on the full
state of the disk containing it, then we’ve erred too far on the side of inely sliced equivalence classes.
Programs become unique snowlakes. Instead, our portable programs must abstract over aspects of
the machine and ignore aspects of their environmentÐthat is the essence of their portability.

We will cover implementation details in Section 4, but in broad strokes we use existing container-
ization approaches (Docker, Nix), or cluster management software, to provide the system image
that provides the backdrop for a portable computation. A deterministic starting image requires
ixing the contents of system directories, like /bin and /usr, to which DetFlow grants legacy
binaries read-only access. At the same time as we control access to system software, we also trust a
small set of abstractions to remain backwards compatible. Speciically:

• The instruction set architecture. Rather than require an exact match on processor model,
we assume ISA backward compatibility and that applications do not query architecture details
via cpuid instructions.
• The Linux kernel. Requiring an exact match on kernel version would decrease usability, so
we assume diferent minor versions of Linux behave the same.
• The Docker CLI. A DetFlow program names a precise image as a starting point, but we
don’t require exactly the same version of the harness software that instantiates the container.
• The detlow tool itself. Much like the Docker CLI, upgrading detflow itself shouldn’t
invalidate previous worklow outputs.
• A build tool. In our case, we trust a Haskell build tool, stack, to maintain backwards
compatibility, but we don’t trust the compilerÐwe always build a worklow with a ixed
compiler version.
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duplicate :: String → String

duplicate x = x ++ x

main :: IO ()

main = do x ← getLine

let y = duplicate x

putStrLn y

getLine :: IO String

putStrLn :: String → IO ()

(a)

import Control.Monad.DetIO

main :: DetIO ()

main = do x ← getLine

let y = duplicate x

putStrLn y

getLine :: DetIO String

putStrLn :: String → DetIO ()

(b)

Fig. 2. Simple Haskell programs that use the IO (a) and DetIO (b) monads

DetFlow must ensure the program cannot explicitly query these versions and thus create
conditional behavior. ButDetFlow leaves it up to these trusted abstractions to guarantee equivalent
behavior for equivalent executions (equivalence deined variously by instructions retired, system
calls, and Haskell source code). Each such choice is discretionary. DetFlow could guarantee
equivalent outcomes only narrowly, requiring exact matches on the above dimensions. Or future
work could emphasize system emulation for greater portability. But we ind the current compromise
practicalÐany deviation from our determinism guarantee is a bug in the implementation of one of
the above abstractions3.

3.2 The DetIO Monad and Its Operations

We use Haskell to build a restricted programming API that allows parallelism while retaining
determinism. This API is showcased in the complete example in Figure 1, and described piece-by-
piece in the subsections that follow. The design does not depend deeply on the choice of Haskell.
We could create a deterministic version of any language (as discussed in Section 9.1), and expose
the same API, but we would need compiler support to aggressively limit the subset of the language
permitted. In a purely functional language, we can instead provide a library.

Haskell already uses its type system to strictly partition pure functions and side-efecting ones. A
regular Haskell program has an imperative main function that serves as the entrypoint for execution.
For example, Figure 2a shows a Haskell programwhich reads a result from standard input, duplicates
it, and prints it to standard output. This illustrates several key properties of Haskell programs. One
is that side efects are expressed using monadic actions, and moreover, external efects that can
afect the state of the system (e.g. the ilesystem) are required to live in the IO monad. The type of
main, IO (), indicates that it does not produce a useful result, so a programmer would only ever be
interested in running main for the sole purpose of causing side efects. In contrast, the duplicate

function is pure, so its type signature need not involve a monad such as IO.
There is a serious law, however, with using IO as the entrypoint for a deterministic program. IO

allows unrestricted access to side efects that jeopardize reproducibility, just as in Java or any other
language. These efects include concurrencyÐwith no guarantees of avoiding race conditionsÐand
reading from ilesystem locations with system-speciic contents. For this reason, Haskell’s IO type
is sometimes nicknamed the łsin binž, and especially in the context of deterministic programming,
uncontrolled access to IO is a cardinal sin indeed.

3Or it is running up against one of the unsupported features of our runtime encapsulation, described in Section 5.1.
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Fortunately, I/O can be reigned in and tamed using techniques from the Haskell programming
tradition. Instead of using naked I/O, we deine a bespoke DetIO type. A simplistic model of DetIO
is a simple wrapper around IO:

newtype DetIO a = MkDetIO (IO a)

DetIO, like IO, is also a monad, so DetIO computations can be composed just like IO actions can.
Moreover, the DetIO API functions are designed to look quite similar to their counterparts in IO, so
in quite a few cases, DetIO can serve as a more-or-less drop-in replacement for IO. We take this
similarity to its logical conclusion by requiring that the main entrypoint for a DetFlow program
must live in DetIO instead of IO, as shown in Figure 2b.

Notice that the code in this DetIO main function is almost identical to the one that lived in IOÐthe
only diference is we had to use DetIO-capable versions of the getLine and print functions. The
diferences between DetIO and IO are more apparent in the implementations of these functions,
which we will cover in some detail in Section 4.

3.3 Basic Capabilities: Files, Printing, and Threads

A DetIO computation works its side efects on the world by operating on stdin/stdout and by reading
and writing iles. The routines for doing this mirror the standard Haskell IO interface :

readFile :: FilePath → DetIO String

writeFile :: FilePath → String → DetIO ()

Further, since our goal is to write parallel programs in DetIO, DetIO also includes the ability to fork
threads, where forkIO x creates a new thread that executes the monadic action x.

forkIO :: DetIO a → DetIO (Thread a)

joinThread :: Thread a → DetIO a

Yet as soon as we allow threads, we also allow racing calls to putStrLn or writeFile! For example,
consider the program shown below.

main :: DetIO ()

main = do forkIO (do foo ← readFile "foo.txt"

if foo == "Hello , World"

then putStrLn "A"

else putStrLn "B")

writeFile "foo.txt" "Hello , World"

If the ile foo.txt is empty at the start of the program, then depending on the order in which themain
thread and the spawned thread complete, this program will either output A or B! Following other
work on deterministic thread scheduling [Olszewski et al. 2009], we could deine a deterministic
logical clock that orders these racing operations. But for our current DetIO design, we can also do
something simpler. First, we deine a deterministic ordering for print statements, simply by lazily

issuing the print statements from a thread only when it is joined into the main thread, which issues
all prints to stdout. Second, for disk access, we simply focus on non-interfering parallelism, where
parallel computations are race-free by virtue of operating on disjoint subsets of iles. To enforce this
disjoint-access dynamically, we need a concept of per-thread permissions. Permissions are granted
from the parent thread to a child thread that it forks. We currently opt for explicit transfer of these
permissions, with forkWPerms :: [PathPerm] → DetIO a → DetIO (Thread a):

do tid ← forkWPerms perms action −− Specify permissions to grant to child thread.

joinThread tid −−We get back the permissions when we join.

−− Note, forkIO is a special case of forkWPerms, where (forkIO == forkWPerms [])
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3.4 A Simple Model of File Permissions

How do we specify łpermsž, above? We need a model of permissions. Previous work [Ridge et al.
2015] has built a detailed formal characterization of POSIX ilesystem speciications and imple-
mentations. For DetIO, however, it is more appropriate to build an abstract model of permissions
that is simpler than, but consistent with, permissions on POSIX ile systems. Namely, we 1) ignore
ownership and group, 2) ignore (assume) execute permissions, and 3) model only read (R) or
read/write (RW) permissions for each path.
Further, we use a concept of fractional permissions [Boyland 2003], where permissions are

weighted by rational numbers and may be split into fragments, sent to diferent threads, and then
recombined. The end user never sees fractional permissions but asks only for whole permissions:
forkWPerms [ R "/a"] or forkWPerms [ RW "/a"]. Fractional permissions are part of the internal
model used by the thread scheduler. A fractional permission of weight one, written R 1.0, represents
łfullž permission on the path. Reading a ile takes a R or RW permission of weight greater than
zero, but a full RW 1 permission is necessary to write or delete it.

3.4.1 Abstract Model. A permission set is a total function from paths to per-path, atomic permis-
sion values, each describing the permission on a single ile or directory:

Perms : Path → {R q | q ∈ [0, 1]} ∪ {RW q | q ∈ [0, 1]}

In order to accumulate the initial permission set for a process, we deine a join operation p1 ∨ p2
on permissions which takes the maximum permission for each path in p1 and p2: (p1 ∨ p2)(x) =
p1(x) ∨ p2(x). And join on atomic permissions is given by:

R n ∨ R m = R max(n,m)

R n ∨ RW m = RW max(n,m)

RW n ∨ R m = RW max(n,m)

RW n ∨ RW m = RW max(n,m)

This semilattice models stronger vs weaker permissions where a higher point in the lattice allows
all executions possible under lower permissions. The lattice is bounded by ⊤ = (λx .RW 1), and
⊥ = (λx .R 0). (In fact, we could form a full bounded lattice, but we have no need of ameet operation
for our purposes.) When the detflow harness launches a job with an initial list of permissions, the
∨ operation is used to combine those permissions into a single p ∈ Perms, which becomes the
initial permission of the main thread in the application.

3.4.2 Permission Transfers at Runtime. The permissions held by a thread change dynamically.
Whenever a child thread łchecks outž a read permission, we halve our permission on that path and
all its descendants.

do −− Assume we start here with (R /a) at weight 1

th1 ← forkWPerms [ R "/a" ] comp1 −− Now we have 1/2 weight left on /a

th2 ← forkWPerms [ R "/a" ] comp2 −− Now we have 1/4 weight left on /a

While the user requests qualitative, unweighted permissions, the exact amount of permission
they receive at runtime depends on the quantity held by the parent thread. Further, we can never
give away more permission than we start with. In fact, the total quantity of permissions available at
the start of an application is globally conserved: permissions are passed around but neither created
nor destroyed. This can be seen in the below deinitions, which return a tuple of child and parent
weighting functions.

checkoutR(path ,f) = ( λp. if under(p,path) then 1/2 (f p) else 0
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, λp. if under(p,path) then 1/2 (f p) else f p )

We trivially lift this function on weights to operate on atomic permission values R q or RW q,
always returning the same kind of permission already held. Likewise, as well as halving permissions,
we combine them with addition. In this case, lifting addition to operate on matching pairs of R/R
or RW/RW permissions, and lifting it over functions to deine p1 + p2 for p1,p2 ∈ Perms, which
forms a monoid.

Gaining permissions at runtime only occurs via an explicit synchronization with another other
thread. When one thread joinThreads another it waits for the target’s termination and then inher-
its its permissions. But we don’t require a strict fork/join structure. Rather, threads are futures,
synchronized in an arbitrary directed acyclic graph.
To extend the example above, we can synchronize with the two forked threads.

do th1 ← forkWPerms [ R "/a" ] comp1 −− Parent has 1/2 weight on /a

th2 ← forkWPerms [ R "/a" ] comp2 −− Parent has 1/4 weight on /a

joinThread th1 −− Parent back up to 3/4, regaining th1’s 1/2 permission on /a.

joinThread th2 −− Back up to weight 1, where we started before forking.

A forked thread may only be joined once, because joining linearly passes permissions from
the joinee to the joiner waiting for its completion. Two attempts to join the same thread causes
the second attempt to raise an exception (deterministically, on every run). An alternate function,
waitThread t, simply waits for t to terminate. Unlike joinThread, waitThread is idempotent and
doesn’t afect permissions.

3.4.3 Checking Out Write Permissions. Above, we saw how checking out a read permission takes
half the weight under that path. Checking out a write permission gives exclusive write access that
cannot be shared between threads, thus it takes 100% of the parent’s permission share. The core
operation on weights becomes

checkoutRW(path ,f) = ( λp. if under(p,path) then f p else 0

, λp. if under(p,path) then 0 else f p )

which is lifted to operate on RW values.
Note that if the parent has already lent out a read permission, it may only have, say 1/2 a

permission on the path in question. In this case, the child still takes all of the weight from the
parent, but it is insuicient to actually issue write operations on the path.

3.4.4 Creating Files and Adding Them to the Parent Directory. writeFile "/a/b" requires RW 1

on "/a/b", but what if the ile doesn’t already exist? Then we create the ile, which implicitly requires
modifying the containing directory. In the underlying UNIX permissions system we indeed need
write access to the directory for this action, but we can also write multiple iles in the same directory
concurrently. (Recall that we’re not concerned with physical ordering or inode numbers.) Thus in
our abstract permissions model, we require permission RW v, where v > 0, in order to create a
ile in the directory d. To conveniently enable ile creation we implicitly take a half-permission on
the enclosing directory when we checkout write access on a ile:

do −− Assume this thread starts with permission on /d of weight 1

t1 ← forkWPerms [ RW "/d/a" ] (writeFile "/d/a" str1) −− 1/2 perm on /d

t2 ← forkWPerms [ RW "/d/b" ] (writeFile "/d/b" str2) −− 1/4 perm on /d

joinThread t1; joinThread t2 −− Regain full permission.

This enables us to conveniently write iles in parallel. It also means that if we have zero permission
on a directory, we can only overwrite existing iles in it, not create new ones. This is consistent with
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POSIX ile systems, since they allowmodifying ile objects in a directory without any permissions on
the containing directory itself. Deleting a directory, on the other hand, requires a full 1 permission
on it and every path under it.

3.5 DetIO Complements Existing Haskell Parallel Programming Libraries

A computation in DetIO doesn’t need to use forkWPerms as its sole means creating parallel work. First,
it’s always possible to call any purely functional code from the monadic code, including internal
task parallelism [Marlow et al. 2010, 2009]. Second, existing deterministic parallel programming
libraries in Haskell [Kuper et al. 2014b; Leijen et al. 2011; Marlow et al. 2011], can, by virtue of their
determinism, expose pure interfaces. For example a library exposing a łParž monad, also exposes
runPar :: Par a → a, making that parallelism library usable anywhere, including inside DetIO

computations.

3.6 system: Shell Calls

While DetIO and Haskell provide the ability to write fully deterministic programs, there are many
useful pieces of software which are not written in Haskell that would be too much efort to rewrite.
We wish to preserve the ability to use legacy software in while still retaining a determinism
guarantee. Indeed, DetIO exposes exactly the same interface for calling external processes as the
standard Haskell IO monad, which, at its simplest, is:

main :: DetIO a

main = do system "ls inputs/" −− Haskell has the usual mix of routines for shell subprocesses,

system "date" −− optionally specifying stdin, retrieving stdout, stderr, etc.

system "echo hello > output/file.txt"

The shell calls inherit the ile access permissions of the calling thread, thus above we require read
access to ./inputs and write access to file.txt. In addition to output iles, subprocesses produce
deterministic output on stderr and stdout. For example, date will always print łWed Dec 31 19:00:00
EST 1969ž. Retaining the determinism guarantee here is the challenge faced by our determinizing
runtime, whose implementation is described in Section 5. In short, our current prototype uses
LD_PRELOAD to load the libdet library into the address space of the subprocess(es). libdet restricts
application behavior, which means some applications will not work in this mode. However, if they
fail, they fail every time. Conversely, compatible applications will produce the same output each
time they run to completion.

3.7 Advanced DetIO Capabilities

Two additional capabilities that are useful for the kinds of deterministic scripts we run are: (1)
blocking data-low communication between DetIO threads, and (2) network access to fetch source
code, data, etc. Both of these are deterministic, or can be made so.
First, IVars are write-once variables, with blocking read semantics, that are well suited to de-

terministic parallel programming [Arvind et al. 1989]. They can be used to construct arbitrary
dependence graphs between threads:

do v ← new −− A fresh, empty IVar.

forkWPerms [] (put v 3) −− Asynchronously ill the IVar.

get v −− Block until the child thread writes the IVar.

We will use IVars, for instance, to implement the dependencies between build targets in a determin-
istic version of the make program (Section 6.1). One complication of IVars is that they extend the
happens before relation and thus afect how concurrent print statements are serialized (Section 4.1).
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Second, while DetIO does not currently support networked, multi-machine applications, we do
support fetching immutable resources from elsewhere on the network. For example, to fetch source
code to build:

do wget "https :// example.com/file -v1.2.3. tar.gz" (SHA256 "123 · · · def")

Here, a hash is provided so that if the external resource changes, this code throws an error. Thus,
when successful, the returned result is deterministic, but the application has a new failure mode. In
the future, supporting content retrieval from a content-addressable network (like the Interplanetary
File System [Benet 2014]), would increase the robustness of such a worklow in the face of an
unstable, dynamic World-Wide Web4. Of course, for a workload we want to archive, prefetching all
the bits it needs at runtime is the best solution.

4 IMPLEMENTATION: HASKELL LIBRARY AND DETFLOW HARNESS

The full DetIO monad is implemented as a state monad that stores all the per-thread state. This
state monad is a transformer on top of the IO monad. Finally DetIO is wrapped as a newtype, with
its constructor hidden, so its contents are private, inaccessible by the end user:

newtype DetIO a = DetIO (StateT ThreadState IO a)

ThreadState includes a number of per-thread variables, tracking each thread’s permissions and
pedigree (ancestry).

Any threads that are not joined when the main thread inishes are implicitly waited upon before
the application exits. This is necessary for determinism, because terminating without computing
all the computations may give false conidence that the run succeeded, when in fact an outstanding
thread was about to throw an error.

4.1 Pedigree and Deterministic Concurrency

To track the happens-before relation at runtime, we irst track the pedigree of each computation.
This is the index in the fork tree for the current thread, i.e., a series of bits indicating whether it
was on the child or parent side of each enclosing fork. Disregarding IVars and thread joins, we
could deine a simple sequential program order based on this, where child threads always complete
before their parents continue (Cilk’s łserial elisionž [Frigo et al. 1998]).

Second, arbitrary synchronizations through thread joins and IVar reads add additional synchro-
nization edges between threads. As in dynamic race detectors [Mellor-Crummey 1991; Raman et al.
2012], we log these synchronizations. Our implementation combines into one log (1) the deferred
print statements, and (2) synchronization edges from other threads.
The main thread issues all print statements to stdout. Print statements executed by the main

thread are issued immediately. When the main thread joins in another thread, it does a backwards
traversal through that thread’s log, which forms a DAG (directed acyclic graph) of print statements,
induced by join edges and IVar write-read pairs. This backwards traversal can stop whenever it
hits part of the log that has already been printed. The traversal returns a collection of all print
statements that exist logically-before the join in question. All such print statements are ordered in
a deterministic topological sort. Aside from respecting edges in the DAG, pedigree is used as a tie
breaker to create a unique topological sort.

4Breaking upstream package repositories is also a problem faced by Nix. See https://github.com/NixOS/nix/issues/859 for
an example.
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4.2 Finite, Printable Representations of Permission Sets

While treating p ∈ Perms permission sets as functions makes the semantics clear, in practice we
want to print out a thread’s permissions in error messages, and a more transparent representation
is preferred. In our DetFlow prototype, we take advantage of the fact that only a inite number
of atomic permissions form the basis for a permission set in practice. We represent a permission
set as a trie, indexed by each component of a path. We interpret a path in this trie as representing
ininite sets of deeper paths containing it as a preix. For instance, a permission of weight 1/2 on
path /a/b, applies to /a/b/c, /a/b/d, and so on. This representation makes it eicient to check łall
paths under pžÐas when checking permissions to delete a directoryÐwithout speciically querying
a permission set function for every extant ile under that directory.

4.3 detflow: A Harness for Launching Deterministic Programs

As we saw above, we use detflow to launch a Haskell program whose main function has type DetIO.
We cannot use the plain Haskell toolchain (i.e. runghc), because it of course expects a main function
of type IO, and we don’t want to trust any user code of that type. In order to guarantee the entire
application is deterministic, the detflow harness generates a short, trusted IO wrapper function
that sets up and launches the DetIO main function. In this generated wrapper, detflow initializes
the permission of the main thread, based on which directories are marked for reading and writing
in detflow’s command line arguments.

Further, as described in the next section, the detflow harness has the inal say as to what Glasgow
Haskell Compiler (GHC) options are used, in order to prevent use of unsafe Haskell features
anywhere in the application. Finally, as our single entrypoint to running deterministic worklows,
detflow implements various convenience features, like the ability to launch shell commands directly
(łdetflow --runshell cmdž), launch the worklow inside a given Docker or Nix image (a capability
inherited from the łstackž tool for Haskell), or run the same source code in a raw, nondeterministic
mode without any determinism-related overheads.

4.4 Safe Haskell, Trusted Code Boundaries

In order that DetIO be guaranteed deterministic, it is crucial that users cannot promote arbitrary IO
efects to DetIO, or else DetIO becomes just as unreliable as IO. Towards this end, we made DetIO

an abstract type (not exporting the MkDetIO constructor). But adversarial users can circumvent
this by using unsafe features of Haskell. For instance, lurking within the standard libraries is
the notorious unsafePerformIO, which allows the use of arbitrary side efects within łpurež code,
ostensibly reserved for those who know what they are doing.

Thankfully, we can safeguard against this using the łSafe Haskellž language extension [Terei et al.
2012]. Safe Haskell was designed for execution of untrusted code received over the network, and
permits only a subset of the language in which you can truly łtrust the typesž. Safe Haskell allows
users to annotate modules as Unsafe, Trustworthy, or Safe. Safe code encapsulates most code in
the Haskell ecosystem: machine-checkable as safe by construction. The Unsafe label is intended
for code that can be used to circumvent type safety or module abstraction, while Trustworthy is
intended for code written by trusted experts which may internally use unsafe features, but exposes
only a safe interface. In order to be marked as Trustworthy, a module’s package must be on a
whitelist of trusted packages by trusted authors. In order for a module to be marked as Safe, every
module that it imports, transitively, must either be Trustworthy or Safe.
By default, detflow allows only Safe code in the deterministic applications it launches. This

prevents ordinary DetFlow users from compromising the determinism of their programs, while
still allowing advanced library authors to extend DetFlow in a Trustworthy fashion.
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5 IMPLEMENTATION, LIBDET: A DETERMINIZING RUNTIME

To determinize x86 software, we must intercept nondeterministic system calls, nondeterministic
instructions, and data races on shared memory. We aim to support realistic existing software, but it
is not our goal to handle adversarial software. To do so would require heavy-weight solutions such
as a new hypervisor or OS modiications; unfortunately, in user-space, even today’s state-of-the-
art, high-overhead binary instrumentation systems such as Intel Pin [Hazelwood et al. 2009] and
Valgrind [Nethercote and Seward 2007] cannot keep adversarial programs from łbreaking out of
jailž [Sun et al. 2016].

For a lightweight, user-space solution on Linux, we use LD_PRELOAD to inject our own wrapper
library, libdet. We intercept and determinize a variety of nondeterministic functions in the C
standard library libc. We group functions into the following categories:

• Time queries: Calls to gather information about current time, elapsed clock cycles, etc. This
also determinizes pseudorandom number generation by determinizing its source of seeds.
• Filesystem access: The DetFlow Haskell process sets environment variables containing
the list of paths the subprocess is allowed to read from and write to. When the user tries to
open a ile for reading or writing, we verify the user has permissions to access the ile. This
catches nondeterminism from directories like /dev/urandom and /proc/. (Of course, we also
intercept attempts to change environment variables, to prevent a backdoor where the user
changes their own permissions.)
• Concurrency: We impose an ordering on threads and processes by intercepting calls like
fork and pthread_create. We force the parent to wait until the child exits. This is our main
limitation on the applications we can currently supportÐthey must run with sequential
semantics.
• Unique IDs: Linux uses nondeterministic unique identiiers like pids and inodes for book-
keeping. libdet replaces these unique IDs with deterministic virtual IDs. The client program
is given virtual IDs, and libdet translates virtual IDs to real ones when interacting with the
OS.
• File metadata: The ilesystem provides a wealth of nondeterministic metadata for each ile:
time of last access, number of hardlinks, etc. We force the stat system call to return dummy
constant values instead.

Finally, we also disable address space randomization (ASLR) for the child processes of DetIO
programs (but not the Haskell DetIO programs themselves). We currently rely on deterministic
Linux mmap behavior for sequential programs, rather than intercepting mmap and enforcing our own
strategy. We do not determinize the full contents of process memory, because the libdet library
itself stores nondeterministic state inside the process (i.e. the true inodes and PIDs being virtualized),
but, again, in the current prototype we assume the determinized process is not adversarially trying
to circumvent libdet.

5.1 Limitations of libdet Runtime Determinization

While libdet provides a straightforward and lightweight approach to runtime determinism en-
forcement, it has several limitations which we discuss here. First, libdet’s interception of system
calls is incomplete, and it cannot track calls made through inline assembly, or by statically linking
against libc. Second, there are nondeterministic CPU instructions we fail to catch, such as RDRAND
which returns hardware-generated random numbers. In future, we could scan the instruction
stream and catch all these instructions dynamically, or statically rewrite the binary to avoid them.
Finally, we use a simple method to handle concurrency. Since threads in libdet run sequentially,
some programs will deadlock if they use spin-waiting. We plan to use a more general deterministic
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runtime system [Kai Lu et al. 2014; Liu et al. 2011; Merriield et al. 2015; Merriield and Eriksson
2013] to enable true concurrency in future work.

6 CASE STUDIES

6.1 Case Study 1: Parallel Sotware Builds with detmake

To exercise DetFlow’s capabilities, we developed a clone of the GNU make build tool using
DetFlow, which we have named detmake. Like make, detmake is capable of reading a Makeile
which speciies one or more targets to be run, and runs the target of the user’s choice. Targets are
allowed to declare dependencies, which indicate that a ile must exist (if declaring a dependency on
a ile) or that a target must have completed (if declaring a dependency on another target) before
running the dependent target.
detmake is an ideal use case for DetFlow for several reasons. Makeile dependence graphs

expose natural parallelism, as non-dependent targets can be run in parallel with relative ease.
Parallel make is not trivial, however, as Makeile dependencies are not always well speciied. As a
simple example, consider this hypothetical Makeile with two targets:

all: create-bindir install-exec-local

install-exec-local:

cd $(DESTDIR)/$(bindir) && cmd

create-bindir:

mkdir -p $(DESTDIR)/$(bindir)

Upon a quick glance, it appears that this install-exec-local target has no dependencies. In
practice, however, this is not true! This target’s command will only succeed if the directory
located at $(DESTDIR)/$(bindir) exists. But notice that the create-bindir target itself cre-
ates $(DESTDIR)/$(bindir), so install-exec-local can succeed or fail depending on whether
create-bindir was run before it! This is an implicit race condition, and one that is not too uncom-
mon in Makeiles, leading to apprehension about activating make -j with unfamiliar codebases.
Happily, reimplementing make with DetFlow forces one to ix these race conditions. Due to

DetFlow’s path permissions, one cannot simply read or write from iles with wild abandon,
as DetFlow forces you to request permissions for iles up front. Fixing a Makeile to declare
its dependencies properly means that running the targets in parallel will not race. We designed
detmake to be parallel by default, although the number of threads can be controlled in the usual
way with -j1,-j2, etc to manage memory usage and processor oversubscription. Irrespective of -j
setting, however, the terminal and disk output from the parallel build is always identical.
We tested detmake on various Makeiles, and measured its performance (Section 7.3). One

Makeile in particular, for RAxML [Stamatakis 2014]Ða bioinformatics tool for maximum-likelihood
based phylogenetic inferenceÐstood out, as RAxML had a concurrency-unsafe Makeile! Running
make in parallel (using GNU make -j) resulted in errors, whereas running sequentially it worked
without issue. The problem was undeclared dependencies which happened to be satisied in the
sequential build. Running under detmake forced these errors to the forefront, as we cannot build
successfully without ixing them.

6.2 Case Study 2: Data Processing, Bioinformatics

DetFlow targets batch software that processes data on disk. Scientiic data-processing work-
loads are a paradigmatic example. In biology, for instance, researchers frequently build scripts
or worklows that invoke one or more programs to process data in simple textual formats: genes
and genomes, raw sequencing reads, phylogenetic trees, and so on. To conduct this case study,
we interviewed a microbiologist to inquire what programs they use frequently, arriving at the
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following sample list: RAxML [Stamatakis 2014]: maximum-likelihood based phylogenetic infer-
ence (deriving likely ancestry trees); Clustal [Chenna et al. 2003]: multiple sequence alignment;
mothur [Schloss et al. 2009]: various tools for the microbial ecology community; BWA [Li and
Durbin 2010]: Burrows-Wheeler aligner, aligning sequences against a reference genome; and HM-

MER [Eddy 1998]: searching for sequence homologs and making sequence alignments (using
hidden Markov models).

All of these programs are written in C/C++. For each of these programs, we run them on a sample
dataset: both natively and then under determinism enforcement. We write a DetIO script to drive
the execution of the software. Recall that in DetFlow, foreign subprocesses are sequentialized,
with the parallelism only at the script level. Fortunately, bioinformatics applications frequently
work on a large directory containing many individual input iles. Thus we write a small, statically
typed DetIO script that invokes the program in parallel on each input ile. While the particulars
varyÐin directory layout and setupÐthis script always contains roughly the following logic:

· · ·

thrds ← forM inputFiles (λ inFile → do

let outFile = changeExtension inFile

forkWPerms [ R inFile , W outFile ] (do

putStrLn ("Processing file "++show inFile)

system ("./bin/prog "++ inFile ++" "++ outFile )))

· · ·

mapM joinThread thrds

Above, we have a fork-join parallel region executing an external program for each input, pro-
ducing disjoint outputs. The basic proposition of DetIO is to ensure that the above scripts produce
deterministic printed output and disk output, in spite of running in a nondeterministic internal
scheduling order. However, because of the restrictions DetFlow puts on legacy programs, not all
legacy software will work. (Yet at least the program will fail reliably if it is incompatible!) In this sec-
tion, we document our experiences with running the ive programs above via the detflow wrapper.
Four out of the ive programs run under DetFlow at the time of this writing. Further, we ind that
we learn a lot about unexpected program behaviors by attempting to run them deterministically.

RAxML and Clustal. We built RAxML 8.2.10 with AVX support, and Clustal 2.1 (in -ALIGN or
-BOOTSTRAP mode), which all ran without incident under DetFlow.

mothur. We ran the make.contigsmode of mothur 1.39.5. Our irst attempt to run underDetFlow
revealed that multiple mothur invocations in the same working directory have an I/O race. They
both attempt to write the same log ile. In fact, even if the log ile name is speciied by the user,
mothur writes it at an uncontrollable location in the current directory, and then moves the log into
place after. When running natively, this results in no errors, but in garbled logs that mix output
from multiple runs. Running under DetIO instead results in a permissions error when the program
attempts to write a log outside of its designated output directory.
Attempting to forkWPerms and pass permission to the logile would not workÐthe permissions

system prohibits shared write-access between threads. Instead, we apply the easy ix of running
diferent mothur invocations in separate working directories within the output space: a trivial ix,
but one we wouldn’t have known to make if not for determinism enforcement.
Finally, mothur implements internal parallelism with each call to the mothur binary. However,

mothur’s parallelism works with DetFlow’s sequential semantics when passed the processors=1

option.
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BWA. When we compiled the latest version of BWA (0.7.15), we found two ways that it bumps up
against the restrictions enforced by DetFlow. First, BWA caches iles in memory using /dev/shm,
to be shared between diferent BWA processes. Second, BWA uses a hand-coded thread pool (rather
than Cilk, OpenMP, etc). Unfortunately, even when run with a 1-thread setting, the thread-pool
requires concurrency (condition variables are used to communicate between threads) and deadlocks
if run with sequential semantics.
By modifying the source code, it is trivial to remove the /dev/shm optimization, and somewhat

less trivial to remove the thread-pool implementation to implement a sequential version of the
program. We found that both these features were recent additions. Thus, rather than patch the
software ourselves, we rolled back to an earlier minor version, 0.7.10 which ran under DetFlow
without incident.

HMMER. HMMER was another program with an internal thread-pool implementation. We found
that this thread-pool library, even with one worker thread, deadlocks (deterministically) under
DetFlow. The source code uses pthreads in several places, and we have not yet made a patched
version of HMMER which executes with sequential semantics. Thus we include HMMER only as a
negative result.

7 PERFORMANCE EVALUATION

In this section we evaluate the performance of DetFlow on the parallel builds and bioinformatics
workloads of the previous section. We measure the overhead of determinization. For this purpose,
we introduce a detflow --nondet mode, which executes the same code, but without determinism
enforcement, i.e. it simply does not bufer prints, and does not load libdet.so. As executing
deterministically under unmodiied Linux is a novel capability, we lack a direct point of comparison
to previous works. (For example, running under DThreads [Liu et al. 2011] would not determinize
I/O, and would add little to our legacy shell-outs, which are already sequentialized.)

Record-and-replay frameworks, however, aremuchmoremature andwidely deployed than their a-
priori-deterministic execution counterparts. In debugging, record-and-replay and determinism ofer
similar beneits. Thus we compare DetFlow’s performance against Mozilla’s Record and Replay
Framework (rr) [Mozilla 2015], which uses a similar approach of intercepting nondeterministic
constructs in user space.
While our system supports running against a ixed software image with a --docker or --nix

lag, all experiments in this section are run without containerization on a cluster of 16 identically
conigured Ubuntu 14.04 machines (Linux 13.19.0-28), with two Xeon E5-2670 CPUs each, at 2.6GHz
with hyperthreading disabled. In this case, cluster management software ensures the identity of
/usr on these machines, rather than containerization. In all places we compile C code, we use GCC
4.8.4.

7.1 Microbenchmarks

Before looking at full application benchmarks, we irst characterize the basic overheads of DetFlow.

7.1.1 Deterministic Printing. Because DetFlow defers print statements to achieve deterministic
output, there is some extra overhead per print statement. An application that produces high-rate
output on stdout would run into these overheads. In Figure 3, we compare the throughput of
printing in deterministic and nondeterministic modes, varying numbers of threads. All threads
print to stdout in a tight loop. We use the standard criterion library for benchmarking, which,
rather than running a ixed iteration count or benchmark duration, varies the number of print
statements (on all threads), and computes a linear regression over many executions, relating time
and number of prints, but discounting constant overhead from, e.g., forking and joining threads.
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The cost of an individual print call, on an individual thread, varies from 585 ns (R2
= 97.5%) at

one thread, to 730 µs (R2
= 95%) at 16 threads, for the native Haskell Data.Text.putStrLn function.

Concurrently printing to the screen is a fairly noisy process to measure, which results in some
outliers, and a somewhat reduced R2 goodness-of-it in the linear regression. Deterministic printing
from non-main threads is slower when uncontended, by almost a factor of 5: 2.66 µs (R2

= 97.5%)
at one thread, and then 30.6 µs (R2

= 95%) at 16 threads. In Figure 3, we always print from a child
worker thread created by forkIO/forkWPerms. Thus the output must always be bufered. Conversely,
if we printed from the main DetIO thread only, there is no overhead, and we would degenerate
to the native putStrLn performance. Even with deferred printing, however, there is an advantage
at higher contention levels. When all threads in the system are trying to print, not only do they
produce garbled, interleaved output, but they also slow down through contention on handles5.
Here deferring prints to the main thread is an incidental optimization (essentially, the standard
elimination-trees trick from concurrent data structure literature [Shavit and Touitou 1995]).

7.1.2 Subprocess Creation. The other place DetIO adds overhead is subprocess creation. In
this benchmark, each subprocess reads from a string for stdin, and returns its stdout in another
string (Haskell’s System.Process.readProcess). When running in its default, deterministic mode,
DetFlow spends extra time setting up environment variables and even checking the disk6. We also
wrap each subprocess in a call to setarch to disable ASLR, which means we double the number
of subprocesses to add this indirection7. Finally, when the subprocess starts, it spends extra time
initializing and then tearing down the libdet library, even if it does no other work.

The end result, pictured in Figure 4, is that determinism increases the cost of calling a subprocess
that immediately returns by about a factor of four. At one thread, the native subprocess calls take
929 µs (R2

= 99%), whereas the determinized calls take 4.05ms (R2
= 99.9%).

Finally, in the right half of Figure 4 we hit scalability limits; at higher thread counts we are
essentially process-bombing the system. Linux scales well but not perfectly: a simple C program
forking these processes would achieve a 10.7× increase in processes forked when using all 16 cores
of our test platform. Our Haskell programs, on the other hand, have a more severe scalability
problem, where at higher thread counts we spend more and more time in Haskell’s GC (spending
40% of time in the GC at 16 threads). It turns out that Haskell performs substantial heap allocation
on subprocess creation, but this only becomes an issue if we’re forking thousands of subprocesses,
as in this microbenchmark. However, for most applications with coarser-grained subprocesses, both
per-subprocess overheads and scalability limits do not signiicantly afect application performance.

7.2 Bioinformatics Applications

We benchmark the four bioinformatics applications described in Section 6.2. Each application runs
9 times, and we report the median end-to-end execution time for the batch job. Because DetIO

scripts are Haskell programs, they can be run interpreted or compiled. We precompile all scripts
before beginning our benchmarking trials.
For RAxML and Clustal we use a sample input dataset consisting of 905 genes (7.4MB FASTA

format) drawn from a set of orthologous Wolbachia proteins. For BWA, we use 102MB sequencing
data in 32 paired iles: Drosophila melanogaster genes sequenced from lies infected with Wolbachia
pipientis. For Mothur, we use the SOP sample dataset provided on the software’s homepage,

5We ind the noisy timings under contention are exacerbated on multi-socket NUMA systems, like our evaluation platform,
and less of a problem on one-socket Linux machines.
6For a pregenerated randomness substitute on the disk, which we use in place of /dev/urandom.
7This could be optimized by disabling ASLR once for the entire Haskell process and its descendants. But it is important to
us to that the Haskell process cannot leak randomness from its address space.
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Fig. 3. Per-second throughput in printing łHello,
World!ž. Standard output is redirected to /dev/null.
Using nondeterministic methods causes throughput
to start higher, but fall due to contention.
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determinism enforcement. All points are normalized against the non-deterministic, single-thread execution
time.

containing a 163MB directory with 20 separate input iles. Several of these datasets provide a
relatively small numbers of input iles, limiting the amount of data parallelism available for load
balancing. (In mothur, for example, there is no good way to execute 20 jobs on 16 processors.)
If running these applications on much larger data sets, then we would expect more abundant
parallelism and better load balancing.
We vary the number of threads used from 1 to 16. Figure 5 and Table 1 show the results. First,

the applications we start with demonstrate various degrees of parallel scalability, and we can see
that scalability is undiminished by determinism enforcement. Overall slowdown for determinism
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Table 1. The overhead incurred by running bioinformatics applications through DetFlow. The baseline is
DetFlow’s --nondetmode. Also reported is the maximum self-speedup atained from running in parallel, and
overhead incurred by running through rr. rr results are normalized to running through detmake in --nondet

mode on one thread.

Name Sequential time (sec) Geomean overhead Self-speedup rr overhead
NonDet Det (all threads) NonDet Det record replay

bwa 68.855 69.163 0.587% 14.160× 14.223× 1.313× 1.790×
clustal 64.128 64.525 0.254% 6.903× 6.945× 1.143× 2.021×
mothur 140.672 140.385 -0.370% 7.410× 7.395× 1.565× 1.945×
raxml 32.693 47.012 -27.545% 7.320× 16.866× 2.368× 2.638×

enforcement is less than 1% per application, with the geomean taken across thread settings. Never-
theless, raxml is a mixed case, as it slows down signiicantly (44%) when determinized at one thread,
but runs faster at higher thread counts. The cause is that raxml produces an excessive amount of
stdout (without a lag to turn it of); thus it runs up against the same issue as in Figure 3Ðpoor
scalability of excessive pipe communication. As a result, the determinized version of raxml achieves
a better parallel speedup than the nondeterministic version, which spends much of its time on this
IO and achieves the lowest scalability.
Table 1 shows the baseline execution times for these applications, which run long enough to

compensate for common system-level sources of noise. The right two columns of Table 1 show
overhead when running under Mozilla rr to achieve reproducibility, as an alternative to libdet.
We show the application slowdown both when recording nondeterminism and replaying it. Both
modes are sequential in rr, and here we run the entire script compiled by DetFlow, under a single
rr recording (rather than a separate recording per shell call). In contrast to DetFlow’s overheads,
rr incurs overheads of up to 2.64×.

Outer Inner Seconds % CPU
Threads Threads

1 16 15.73 859%
2 8 10.79 1192%
4 4 11.28 1133%
8 2 13.35 954%
16 1 19.26 648%

16 4 10.37 1244%
16 16 9.71 1376%

7.2.1 Opportunity Cost of Sacrificing Nested Paral-

lelism. The hybrid determinism strategy doesn’t require
that we sequentialize shell calls to legacy programs, but
it simpliies the implementation and makes overheads
more predictable (than in multithreaded determiniza-
tion). One downside of sequentialization, however, is
that we miss opportunities to employ nested parallelism,
where both the coordinator and its external shell calls
are parallel (outer and inner loops). This can be sub-
stantial for some applications, especially because our
applications spends substantial time reading from disk.
Simply running one job per core does not always satu-
rate the machine, as we can see in the table to the right. In this table we run Mothur with exactly
16 input iles, and we run it in detflow --nondet mode so as to enable Mothur-internal paral-
lelism. Here, 1600% CPU would represent full utilization by a CPU-bound workload, but running
16 DetFlow threads only runs at 648% CPU utilization over the whole execution. We see that
parallelizing exclusively the inner loop in Mothur is more efective, and parallelizing at both levels
(oversubscribing the machine) is most efective. However, simply increasing the threads used by the
outer loop (we ran up to 32, for 2× oversubscription), did not increase throughput. This provides
motivation for future work to either (1) better refactor applications to be parallelized externally, or
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(2) add deterministic multithreading support, and deal with the consequences of less predictable
overhead.

7.3 Deterministic Make

We benchmark detmake by using it to compile and link software. Like all DetFlow programs,
detmake is written in Haskell using DetIO. It doesn’t achieve perfect compatibility with GNU make,
but it does support the most commonly used Makeile features: variable expansion, wildcard
patterns, etc. As benchmarks, we select programs drawn from the SPLASH2 collection, but recall
that here we time compiling the software rather than running it. In Figure 6, we can see that the
modest size and degree of parallelism in these builds makes parallel speedup less than perfectly
smooth. However, detmake is able to keep up with GNU make in performance, and, moreover,
the additional overhead in determinization is negligible. For barnes, the overhead is 0.384%; for
ocean_cp, 2.576%; for raytrace, 7.514%; and for fft, 2.33%. The overheads look larger than they
actually are, as the sub-second execution times when running on many threads amplify even the
smallest diferences in runtime when determinized.

8 RELATED WORK

The most closely-related work to DetFlow are deterministic operating systems like Determinator
[Aviram et al. 2010] and dOS [Bergan et al. 2010] that provide determinism for a process, or a
set of processes, along with the ilesystem and IPC mechanisms like pipes. DDOS [Hunt et al.
2013] extends the dOS system to a local network of machines. While these systems provide strong
deterministic guarantees, they require a custom operating system which is a highly invasive change.
Many other deterministic systems focus solely on making shared memory interactions deter-

ministic. We divide this work into two camps: programming languages that enforce deterministic
parallelism, and runtime systems that do so. Many of the deterministic languages are extensions
to or libraries for Haskell, such as Data Parallel Haskell [Chakravarty et al. 2007], Evaluation
Strategies [Marlow et al. 2010], monad-par [Marlow et al. 2011], LVish [Kuper et al. 2014b], and
Concurrent Revisions [Leijen et al. 2011]. Concurrent Revisions, like Determinator, takes the view
that each thread or task logically copies the entire heap, with changes reconciled at control-low join
points. Outside of Haskell, several approaches to deterministic parallelism have also been proposed,
including the NESL data-parallel functional language [Blelloch 1992], stream-based programming
models [Thies et al. 2002], type-and-efect systems for imperative languages like Java [Bocchino
et al. 2009], and a deterministic version of the Galois system for task-based parallelism [Nguyen
et al. 2014].

There are also many runtime systems that focus on making programs deterministic in a language-
agnostic way. Some focus on programs without data races [Olszewski et al. 2009], while others
focus on making even racy programs deterministic via hardware support [Devietti et al. 2009, 2011;
Hower et al. 2011] or purely in software [Kai Lu et al. 2014; Liu et al. 2011; Merriield et al. 2015;
Merriield and Eriksson 2013].

9 DISCUSSION AND FUTURE WORK

9.1 Implementation in Other Languages

Implementing a framework like DetFlow does not require a purely functional language like
Haskell as the coordinator language. On the other hand, the more a language can reduce its
łnondeterministic surface areaž, exposed by its language features and libraries, the easier it becomes
to support DetFlow’s capabilities. Implementing a deterministic mode for a given programming
language can be a matter of subsetting the allowed language features, or in some cases it is suicient
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to limit the libraries the programmer may access. The key goal is to limit the combination of side
efects and threads. For example, in Standard ML, impure features are merely a matter of libraries,
so without access to mutable data structures (and I/O) the language becomes purely functional, and
parallelism (as in MultiMLton, Manticore, and other implementations) doesn’t threaten determinism.
Conversely, in imperative languages it is easier to achieve determinism by disabling threads, but
leaving imperative features alone. Consider, for example, a subset of JavaScriptÐwhich lacks shared
memory concurrency anyway. In this scenario, if we want to enable deterministic parallel batch
processing we need a way of expressing parallel compositions of shell calls without using threads
inside the coordinator language.
Finally, whatever restrictions determinize the coordinator language, to give them teeth there

must be a strict, static means of enforcing these restrictions, such as a special compiler mode. Ideal
would be a ine-grained notion of safety and trust such as Safe Haskell provides. However, few
compilers track safety in this way. The research language Modula3 is perhaps the closest it, as
it supports marking modules as safe and unsafe, with safe being the default [Cardelli et al. 1989].
Some languages have already moved in the direction of safe subsets, with examples including the
Secure EcmaScript [Taly et al. 2011] and ADsafe [Crockford 2008] subsets of JavaScript.

9.2 uasi-determinism and Uncatchable Exceptions

Ultimately, a machine running a deterministic computation may fail: out of memory, hardware
errors, etc. Thus it is best in practice to think of a detflow invocation as quasideterministic [Kuper
et al. 2014b]: there is only a unique (successful) return value, but the job may fail and not return
any result. Fortunately, it can be retried, or run on another machine, etc, until it does produce
a result. Given the reality of quasideterministic behavior, we have elected to also allow certain
nondeterminism in the exact output of failed runs. First, our host language for DetFlow, Haskell,
already has imprecise exception semantics [Peyton Jones et al. 1999]Ðif a program is deinitely to
throw an exception, which exception it throws may be indeterminate, for example, if two parallel
computations both throw an uncaught exception. Indeed, for this reason Haskell exceptions can
only be caught in the IO monad, where nondeterminism is permitted. As a corollary, DetIO may
not catch Haskell exceptions. Thus our philosophy is to łlet it failž. Likewise, there is a variety of
error behavior (failed subprocesses, signals), that we do not attempt to determinize currently, so
libdet turns these exceptional circumstances into failures of the whole detflow job. In the future,
we could aim to determinize a higher percentage of subprocess failures, but if the subprocess fails
due to out-of-memory, or cosmic rays, then wemust not be able to recover from that failure inside a
deterministic job, because that recovery itself would be nondeterministic (at least without a strong
proof of observational equivalence between the program and its recovery strategy).

9.3 Variable-Strictness Determinism Enforcement

In this paper, we have introduced a user-space method for determinism enforcement that leaves
open some holes that would be exploitable by adversarial programs. Indeed, there are a spectrum
of implementation options creating a trade-of between overhead and the robustness of deter-
minization. We could go further, and use a ptrace-based approach similar to Mozilla rr, which
would shrink our attack area but not yield a 100% secure guarantee. One avenue of future work
is to design hypervisors that can close all the remaining holes through which an adversary can
sneak. In fact, there are several implementation technologies, each with diferent uses along the
overhead/strictness spectrum:

• Ptrace: Ptrace is a system call for observing and controlling the execution of another process.
It is primarily used for breakpoint debugging and system call tracing [Linux 2015]. Ptrace can
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enforce runtime determinism by intercepting system calls made by the tracee. This method
incurs higher overheads as all system calls made by the tracee will send a SIGTRAP signal to
the ptrace tracer.
• Hypervisor: A process running inside a lightweight hypervisor can be containerized in a
deterministic environment and have all its system calls determinized. While providing strong
determinism guarantees, we expect signiicant virtualization overhead. Moreover, retroitting
a hypervisor to enforce determinism would require signiicant efort.
• Kernel Modules: Modern OSs allow extensions to the kernel through modules [Salzman
2009]. A kernel module can intercept all system calls to enforce determinism with little
overhead. This approach involves subtle kernel programming where errors can crash the
system or create security vulnerabilities. Furthermore, the user needs superuser access to
add kernel modules and must trust this code to be error free.
• Compiler Pass: Whenever the source code is available, a compilation pass can scan the low-
level target language (e.g. assembly, LLVM IR) for nondeterministic instructions and system
calls and rewrite them to be deterministic. Then, the binary is linked against a deterministic
runtime similar to libdet. This is the approach take by [Mashtizadeh et al. 2017] for their
record/replay system.

Once we have a range of implementations ofering diferent trade-ofs, that diversity itself opens
up new possibilities. For instance, in the Debian Reproducible Builds scenario, one can deliberately
run at a weaker enforcement level in order to reproduce a build with a known output-hash. If the
job reproduces the outcomeÐeven with weak or missing determinism enforcementÐthen we are
done! In the (hopefully rare) cases where it does not, it is possible to simply rerun with stricter

enforcement before registering a true reproduction failure. In this scenario, weaker enforcement
strategies serve as the optimistic, fast-path execution.

9.4 Arbitrary Programs as Pure Functions

What is a purely functional program? It is subject to debate [Sabry 1998]. Purely functional languages
like Haskell still require a runtime, system calls, and other machinery to actually compute pure
functions. Purity is simple to reason about since the pure code must not access any state outside of
its process. The moment that a function oversteps the process boundary, e.g., by printing to stdout
or by performing a computation that depends on the disk state, it is labeled as impure (required to
live in the monadic IO type) to avoid labeling operations which could potentially break referential
transparency as łpurež.

One interesting consequence of this work is that we can expand the scope of what is considered
pure. We can run arbitrary x86 executables under libdet and get the same results each time
(assuming we track I/O appropriately). There is no risk of running programs and breaking referential
transparency. Legacy programs become pure functions, and we can expand the scope of pure code
to include calls to legacy software without requiring a monadic type. Pure functions can even
access scratch space on disk, as libdet will conine writes to this scratch space and wipe it clean
when the function terminates, enforcing referential transparency.

Oneway to integrate existing software into pure Haskell codewould be through a foreign function
interface (FFI). Currently, Haskell’s FFI for C can import both pure and impure functions into Haskell.
However, the burden is on the programmer to ensure that impure code is given an IO return type.
With libdet, this burden could be shifted to the language, as any x86 program that reads from stdin
and prints to stdout could be imported as a foreign function of type String → String. This would
be a form of IO-free FFI based on runtime encapsulation. Indeed, given Haskell’s semantics and its
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compiler’s assumptions about referential transparency and code reordering, what is important is
determinism, not a stylistic notion of functional versus imperative code.
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