
Reproducible Containers

Omar S. Navarro Leija
omarsa@seas.upenn.edu

University of Pennsylvania

Kelly Shiptoski
kship@seas.upenn.edu

University of Pennsylvania

Ryan G. Scott
rgscott@indiana.edu
Indiana University

Baojun Wang
wangbj@gmail.com
Indiana University

Nicholas Renner
University of Pennsylvania
nrenner@seas.upenn.edu

Ryan R. Newton
Indiana University

rrnewton@indiana.edu

Joseph Devietti
University of Pennsylvania

devietti@cis.upenn.edu

Abstract
We describe the design and implementation of DetTrace,
a reproducible container abstraction for Linux imple-
mented in user space. All computation that occurs inside
a DetTrace container is a pure function of the initial
filesystem state of the container. Reproducible containers
can be used for a variety of purposes, including replica-
tion for fault-tolerance, reproducible software builds and
reproducible data analytics. We use DetTrace to achieve,
in an automatic fashion, reproducibility for 12,130 De-
bian package builds, containing over 800 million lines
of code, as well as bioinformatics and machine learn-
ing workflows. We show that, while software in each
of these domains is initially irreproducible, DetTrace
brings reproducibility without requiring any hardware,
OS or application changes. DetTrace’s performance is
dictated by the frequency of system calls: IO-intensive
software builds have an average overhead of 3.49×, while
a compute-bound bioinformatics workflow is under 2%.
CCS Concepts. � Software and its engineering
� Multiprocessing / multiprogramming / mul-
titasking.
Keywords. reproducibility; determinism; Linux; Docker;
software containers

ACM Reference Format:
Omar S. Navarro Leija, Kelly Shiptoski, Ryan G. Scott,
Baojun Wang, Nicholas Renner, Ryan R. Newton, and Joseph

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned

by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378519

Devietti. 2020. Reproducible Containers. In Proceedings of
the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’20), March 16–20, 2020, Lausanne, Switzerland.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3373376.3378519

1 Introduction
In data-processing contexts, it is often important to
repeatably map each input to a unique, deterministic
output. Determinism is useful in software builds [1, 2],
reproducible data analytics [3, 4], and fault-tolerant dis-
tributed systems [5–8]. Yet in spite of previous work on
deterministic languages [9–11] and operating systems [12–
14], it is challenging to enforce deterministic output in
practice. Thus we seek a practical container abstraction
to isolate running software and execute it against clearly
delimited input data, achieving end-to-end reproducible
handling of data. For deployability, it is furthermore es-
sential to provide this guarantee on commodity hardware
and software.
Prior work on deterministic operating systems is nei-

ther necessary nor sufficient to meet our definition of
repeatable data processing, as additional encapsulation
is needed to ensure the program starts in the same state,
without differences in system time or identifiers such as
pids. For example, Determinator [12] does not provide
a repeatable notion of deterministic time. dOS [14] pro-
vides a deterministic process group abstraction and can
record-and-replay timing-related system calls. But dOS
also uses record-and-replay for filesystem interactions,
leaving the filesystem outside of the “deterministic box”.
Thus dOS cannot determinize a data-processing job that
necessarily includes file I/O.

Ultimately, determinism is also a weaker property than
what we desire – determinism guarantees the same result
for repeated runs on a given machine, but in this work
we seek identical results across machines (Section 7.3),
a property we term reproducibility. In this paper, we de-
scribe the DetTrace system that makes strides towards

https://doi.org/10.1145/3373376.3378519
https://doi.org/10.1145/3373376.3378519
https://doi.org/10.1145/3373376.3378519

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

a reproducible container abstraction for x86-64 Linux
programs. All code running within the container is forced
to run reproducibly, without needing any source code
changes. DetTrace encapsulates a Linux process tree and
the IO it performs, and runs on commodity hardware and
stock Linux distributions. The DetTrace runtime uses
a combination of Linux namespaces, bind mounts, and
ptrace facilities to intercept system calls and x86 instruc-
tions with irreproducible semantics. While DetTrace sup-
ports process-level parallelism, threads within a process
are currently serialized. While many prior deterministic
execution systems support thread-level parallelism, we
focus on providing a robust container implementation
for complex multi-process workloads.

DetTrace exports the same POSIX API that the pro-
cess tree inside the container would otherwise see—in
each case we simply select one valid behavior out of
many to ensure reproducibility. For example, DetTrace
provides a reproducible notion of time so the timestamps
added to archives by the stock tar utility (stemming from
a system call like time) are accordingly reproducible. By
enforcing reproducibility at the system call and ISA level,
we can transparently export reproducibility to all higher
levels including arbitrary language VMs.

This paper makes the following contributions:
∙ We present the design of DetTrace, the first repro-
ducible container abstraction which runs in user-
space and supports unmodified programs.

∙ We give the first taxonomy of the sources of irre-
producibility within Linux system calls and x86-64
instructions. For sources we don’t handle, we de-
scribe the challenges involved in doing so.

∙ We use DetTrace to run bioinformatics workflows,
train TensorFlow models, and build 12,130 Debian
packages reproducibly, including large packages
like llvm, clang and blender. Much of this software
runs irreproducibly by default, but DetTrace is
able to render it reproducible.

∙ We show that DetTrace’s performance overhead
is correlated with the frequency of system calls in
a given workload: e.g., compute-intensive process-
parallel bioinformatics workflows can see overheads
under 2%, while system-call-intensive software builds
see overheads of 3.49× on average.

2 Why is Reproducibility Important?
Reproducibility confers many advantages for software
development. Reproducibility is crucial during debug-
ging; bugs that can’t be reproduced are much harder to
fix. In distributed systems, reproducibility ensures that
all replicas behave the same way, accelerating consensus

[15] and enabling transparent fault recovery [6]. Repro-
ducibility also has more specific benefits in a range of
software domains, which we explore next.

Reproducible Builds. Bitwise-reproducible builds
confer many advantages. Builds can run faster thanks
to more hits in caches of build artifacts, and builds
can be confidently distributed knowing that the same
artifact will be produced on any node of a cluster. Repro-
ducible builds also increase software integrity, boosting
confidence that a given binary originated from a partic-
ular source code release. For these reasons, many Linux
distributions, catalyzed by the Debian Reproducible
Builds (DRB) [2] effort, target bitwise reproducibility
of all their packages. Microsoft is pursuing reproducible
software builds [16] with support in its C# and VB
compilers [17]. Google’s Blaze/Bazel build system [1]
encourages a reproducible build ecosystem, to prevent
spurious changes due to irreproducibility causing mas-
sive additional downstream rebuilds in Google’s unified
internal software repository.

To achieve reproducibility, every piece of the software
build toolchain needs to be reproducible: preprocessors,
compilers, scripts used in the build process, and so on.
For example, to deal with timestamps that tar records
for each file in the tarball, tar was extended with the
--clamp-mtime flag [18] to force these timestamps to a
fixed value. The modified tar program then needs to be
packaged and distributed, and build scripts updated to
use the new flag, before reproducibility is achieved.
Whacking one irreproducible mole at a time is pre-

dictably laborious. After its first year, DRB had 3,193
of 5,151 supported packages building reproducibly [19],
and 18,800 reproducible packages (of 21,782) after two
years. After two years of development, we have achieved
reproducibility for 100% of our 12,130 supported pack-
ages.1 At present, after more than 5 years of effort by
dozens of contributors, 5.2% of current Debian packages
(1,289 in all) remain irreproducible. While tools exist to
identify sources of irreproducibility [20], fixing a build is
still a manual process. Even should DRB reach 100% re-
producibility, vigilance would be required to ensure that
errant code changes did not reintroduce irreproducibility.

Computational Science. It is perhaps ironic that,
while reproducing results is a cornerstone of the scientific
method, many computational science tools are not repro-
ducible. While chemical reactions and living organisms
are intrinsically variable, there is no good reason for com-
putation to behave similarly. Reproducibility in computa-
tional science would accelerate scientific advancement as

1The total number of packages differs between our effort and
DRB’s current set, because we target a fixed set of packages to

ensure clean experimental conditions (see Section 6), while new
packages are constantly being added to Debian.

Reproducible Containers ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

scientists could more easily share, reproduce, and build
upon one another’s work. Improving the reproducibility
of scientific results is a key focus for funding agencies [21]
and can be seen in our community in the growing artifact
evaluation movement. We find a common bioinformatics
tool to be irreproducible (Section 6.1).

Machine Learning. There is growing interest in re-
producible machine learning (ML) [22]. Reproducibility
enables auditing of models to see why they made cer-
tain decisions. It also makes it easier to see whether
performance changes are attributable to, e.g., conscious
design changes or incidental randomness like sampling
of the training set. We apply DetTrace to the popu-
lar TensorFlow framework, which is well-known to be
irreproducible [23, 24].

3 Reproducible Containers
In this work we aim to provide a reproducible container
abstraction. The container itself is specified as an initial
filesystem state and a program (from the filesystem)
to run. This program may in turn launch other pro-
grams, e.g., if it is a shell. The programs running in
the container may attempt to execute arbitrary x86 in-
structions and Linux system calls, though we do not
guarantee that all such attempts succeed. In our initial
prototype, containerized code can interact only with its
filesystem and other programs running concurrently in
the container. However, in the future we envision limited
forms of external interaction being permitted if they pre-
serve reproducibility, e.g., downloading files with known
checksums.

Our reproducibility goal can be decomposed into two
sub-properties: determinism and portability. For us, de-
terminism is dataflow determinism [25], which means
that, on a given machine, each read returns the same
value on every run. This hides sources of irreproducibility
like time and explicit randomness. Determinism implies
many useful properties: the filesystem state after all pro-
cesses have finished will be identical, as will the messages
printed to standard output and standard error. Strictly
speaking, due to the possibility of external errors that
cannot be determinized, e.g., running out of disk space,
our guarantee is one of quasi-determinism [26]: any two
runs are either dataflow deterministic, or at least one
run crashes due to an external failure.

Portability means that dataflow determinism extends
across machines as well, with varied microarchitectures
or OS versions. Our container hides these details by al-
ways reporting a simple x86-64 uniprocessor and Linux
4.0 kernel. To be practical, our container can only ab-
stract away from a limited number of hardware or OS
details: we do not emulate an x86-64 chip when run-
ning on an ARM microcontroller. DetTrace also requires

DetTrace

file contents,

ownership,

permissions
OS scheduling

randomness

real time

kernel version

microarchitecture

core count

I/O devices

010010
101010
101010
100101

computation

Figure 1. DetTrace containers abstract away both
sources of nondeterminism (gray arrows) and nonporta-
bility (black arrows), making a DetTrace computation a
pure function of its initial file state.

certain hardware and OS support to provide this abstrac-
tion, in particular at least an Intel Ivy Bridge processor
and Linux 4.12. DetTrace can run on older processors
and Linux versions, though with fewer portability guar-
antees (Section 5.8) or lower performance (Section 5.11).
DetTrace also offers a measure of forward compatibility.
While a future Linux version might introduce new irre-
producible APIs that DetTrace would grow to support,
today’s software using existing Linux APIs cannot access
these, and so if software works with DetTrace today it
will remain reproducible going forward.

Ultimately, a DetTrace container runs as a pure func-
tion of the container configuration and initial filesystem
state. File contents affect the computation, but file meta-
data is only partially visible. Two runs where only the
mtime of a file varies will produce the same output, but a
permissions change can affect output. Figure 1 illustrates
what constitutes an input, i.e., what can induce output
changes in a DetTrace computation.
Existing container technologies (like Docker) do not

provide reproducibility: they are neither deterministic
nor portable, as many details of the host OS and pro-
cessor microarchitecture are directly visible inside the
container. Virtual machines offer stronger hardware ab-
straction but lack determinism and are also quite heavy-
weight. We believe that the DetTrace reproducible con-
tainer abstraction delivers significant advantages over
existing approaches for domains like building and testing
software where reproducibility is critical.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

4 Reproducibility Requirements for
Linux and x86-64

Code running inside our user-space reproducible con-
tainer has access to two major interfaces: the x86-64
instruction set and the Linux system call API. Because
we place no restrictions on code in the container, it
can contain arbitrary instructions and attempt arbitrary
system calls. Inspired by the Popek and Goldberg virtu-
alization requirements [27] which define the requirements
to provide a virtual machine abstraction, we define the
set of requirements for reproducibility. We analyze each
documented x86-64 ISA instruction2 and system call to
see if it can be a source of irreproducibility, and under
which conditions if so. Of particular importance is iden-
tifying critical members of an interface—those which
permit irreproducibility but which cannot be reliably
detected during execution. Any critical instruction or
system call could silently introduce irreproducibility.
Our use of ptrace means that we see all system calls

made from the container, so there is no potential for
a critical system call (we also handle vDSO calls, see
Section 5.3). If a given system call is a source of ir-
reproducibility, there are many potential mitigations:
wrapping the syscall or replacing it entirely with a de-
terministic counterpart (like time calls), converting it
into a nop (like sleep calls), or not supporting it and
throwing a (reproducible) container-level error.

There are many sources of irreproducibility within the
latest x86-64 instruction set [29]. Privileged instructions
are often irreproducible but will raise an exception in
our user-level container. Some irreproducible user-level
x86-64 instructions are difficult, though possible, to trap.
rdrand and rdseed return random bits from a hardware
entropy source, and can be trapped at the hypervisor
level via the VT-x extensions, but not from ring 0. In-
structions like rdpmc (read from performance counter)
are sometimes accessible from user-space but can be
configured to cause traps via appropriate kernel settings.
Some floating-point instructions like cvtsd2si (which

converts a double to an integer) are documented as hav-
ing “unpredictable behavior across different processor
generations” with certain instruction encodings. We have
not investigated the extent of this behavior, but, by com-
promising portability, it is a potentially critical source
of irreproducibility.

TSX Irreproducibility. Ultimately, we found just
one family of definitively critical instructions: the TSX
instructions used for transactional memory and lock eli-
sion. A transaction can abort for a variety of reasons,
some of which—like the arrival of a timing interrupt—are

2There are some undocumented x86-64 instructions [28]. Handling
these would be an interesting avenue for future work.

highly irreproducible. A program can monitor its own
aborts via the abort handler registered with the xbegin
instruction, and perform irreproducible computation as
a result. While the presence of TSX can be hidden by
crafting the return value of cpuid, an invalid or adversar-
ial program can ignore cpuid and run these instructions
anyway. We are not aware of any ability to trap on the
execution of TSX instructions, though Intel’s microcode
updates that disabled prior buggy versions of TSX [30]
show that software configurability does exist on some
level. Hardware support for trapping critical instructions
is necessary for efficient and complete detection, because
the hardware knows definitively what instructions a pro-
gram is executing. Detecting the presence of xbegin in
an adversarial program is impractical: the program may
jump into the middle of an otherwise-valid instruction
or employ self-modifying code to obfuscate its behavior
beyond the reach of static binary analysis. Dynamic anal-
ysis or emulation can in principle catch such behavior,
but only at a prohibitive runtime cost.

Because current hardware does not allow our DetTrace
prototype to trap all irreproducible instructions, we rely
on programs being well-behaved enough not to execute
illegal or missing instructions (i.e., respecting the output
of cpuid). Nevertheless, our characterization of Linux
system calls and x86-64 instructions is a useful yardstick
for work towards 100% reproducible containers that are
robust against even adversarial programs.

5 DetTrace Design
DetTrace combines a lightweight sandboxing container
with system call interception to achieve reproducibil-
ity enforcement for arbitrary Linux programs. DetTrace
achieves this function while meeting our design goals: a
pure-software user-space solution, supporting unmodi-
fied binaries, requiring no privileged (root) access, and
requiring no record and replay. DetTrace uses standard
Linux container features: user, PID, and mount names-
paces, bind mounts and chroot. These mechanisms help
to insulate programs in the container from programs and
files outside it.

DetTrace uses ptrace to intercept all system calls made
by code running in the container. The Linux ptrace
mechanism allows one process (the tracer) to monitor
the execution of another process (the tracee). The tracer
can intercept the tracee’s system calls (both before they
reach the kernel and before they return to the tracee),
signals, and more. The tracer can also read and write
tracee memory and registers. Since the tracer is its own
process, it is well-isolated from tracee faults (and vice-
versa). However, extra context switches are required
on intercepted events to jump to the tracer each time.
In DetTrace, system calls with reproducible semantics

Reproducible Containers ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

irreproducible system call

user process
A

user process
B

Linux kernel

x86-64 processor

DetTrace

irreproducible
instruction

reproducible
results

chroot, namespaces

Figure 2. High-level overview of DetTrace’s organiza-
tion. The unshaded blocks (processor, kernel and user
programs) are completely unmodified.

are permitted through, while those with irreproducible
effects are either wrapped reproducibly or are identified
as unsupported, triggering a runtime error.
Next we detail sources of irreproducibility and de-

scribe how DetTrace renders each one reproducible. For
simplicity, we use the term “user process” to refer to a
process running inside a DetTrace container.

5.1 Process, User and Group IDs

Thanks to our process namespace, processes inside our
container receive unique PIDs that are independent of
the world outside the container. A user process cannot
name any process outside the container. As user pro-
cesses are created and terminated deterministically, and
Linux allocates PIDs in each namespace sequentially,
PIDs inside the container are naturally deterministic.
We similarly leverage uid and gid namespaces to similar
ends. The first user process starts with root privileges,
and can change identity via setuid.

5.2 OS-Generated Randomness

A Linux user process can request randomness from the
OS via the getrandom system call, or by reading from the
special /dev/random or /dev/urandom files. DetTrace in-
tercepts getrandom system calls and fills the specified user
buffer with values generated from a simple LFSR pseudo-
random number generator. Similarly, /dev/random and
/dev/urandom are named pipes to which DetTrace writes
values from our PRNG. The PRNG seed can be specified
when invoking DetTrace, to introduce “true randomness”
in a controlled way. User processes can also obtain ran-
domness via the x86-64 instructions rdrand and rdseed,
discussed later in Section 5.8.
Some applications require true randomness for secu-

rity reasons. DetTrace can provide such applications

with direct access to, e.g.,, the real /dev/urandom and
optionally log the values read to preserve reproducibility.

5.3 Time and Clocks

A variety of system calls return some form of timing
information. For system calls that report wall clock time
directly (like gettimeofday) DetTrace reports instead re-
producible logical time values. For logical time, DetTrace
uses a count of the number of time calls performed by
a user process. This ensures that time monotonically
advances between calls, which is important for some user
programs which check timing behavior.
To enable high-resolution timing, Linux uses the vir-

tual Dynamic Shared Object (vDSO) mechanism to
implement timing system calls like gettimeofday. For per-
formance reasons, these system calls are implemented as
library calls and are thus not intercepted by ptrace. While
Linux’s LD PRELOAD mechanism is a natural choice for
intercepting library calls, it is incomplete in small but im-
portant ways. First, it doesn’t support statically-linked
binaries. Second, a process can find the vDSO library
within its address space (via getauxval) and directly call
a vDSO function; indeed, libc does just this in its mk-
stemp function. To ensure airtight interception of vDSO
calls, DetTrace instead, just after each execve system call,
replaces the vDSO library code with our implementation
where each vDSO function makes a direct system call—
which is duly intercepted via ptrace. We furthermore
make the vvar page unreadable to prohibit any access to
the raw nondeterministic data that vDSO timing calls
use. While replacing vDSO calls with normal system
calls incurs a performance penalty, we plan to extend
our vDSO library to handle the timing calls directly in
a future version of DetTrace.

The x86 rdtsc instruction returns timing information in
the form of the current cycle count. Fortunately, rdtsc can
be trapped and emulated reproducibly, see Section 5.8.
Filesystem timestamps are a final source of timing in-
formation which we discuss in Section 5.5. With non-
deterministic parallelism, racing threads can recreate
high-resolution clocks, but our deterministic scheduling
renders this moot [31].

5.4 Signals and Timers

Signals are a prime source of irreproducibility as their
arrival is typically asynchronous. In principle, signal
generation and delivery can be made fully reproducible
via a reproducible logical clock, as with deterministic
shared memory synchronization [32]. However, we have
not found this necessary for our current workloads. In-
stead, DetTrace provides reproducibility for a subset of
Linux signals. First, DetTrace does not support sending
signals between user processes. It is important, however,
that a user process can send itself signals. Some such

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

signals are naturally reproducible: SIGSEGV, SIGILL and
SIGABRT act like “precise exceptions” that halt program
execution at a well-defined, reproducible state.
Timers, requested via system calls like alarm, are an-

other common source of self-signals. To render timer
expiration reproducible, timers in DetTrace expire “in-
stantaneously,” invoking a signal handler if appropriate.
We convert signal-generating timer calls (like alarm) into
a pause system call that blocks the user process. Then,
the tracer sends the necessary signal to the user process,
invoking a registered signal handler if appropriate. This
causes the pause call to return, and the user process
resumes execution. The timer call never reaches the OS,
but is instead emulated by the tracer.

5.5 Files and Directories

Files and directories are a rich source of irreproducibility,
due to a complex API and extensive metadata. Our first
step in providing a reproducible abstraction for files and
directories is to isolate the view of the host filesystem
that a user process has, accomplished via the chroot
system call. DetTrace can also be nested inside standard
containers like Docker to provide stronger filesystem
isolation from the host.

File and directory ownership and permissions are
inputs to a DetTrace computation (Figure 1). The Linux
namespace controls the mapping from uid/gid inside the
namespace to uid/gid on the host machine; this mapping
is also part of the input to DetTrace. By default, we map
the current user account to root inside the container,
and all others to nobody/nogroup.
The order in which directory entries are returned

is under the control of the filesystem implementation.
To make the getdents system call reproducible, DetTrace
sorts directory entries by name before returning them
to the user process.

The read and write system calls have irreproducible
semantics, as they may read/write arbitrarily fewer bytes
than requested. While in practice we have never seen
such “partial” operations on regular files, they do regu-
larly arise when accessing pipes. To render these system
calls reproducible in all cases, DetTrace automatically
retries partial reads and writes until they process the
requested number of bytes, or a read returns EOF. This
is accomplished by decrementing the user process pro-
gram counter to rerun the system call instruction, and
adjusting the arguments to, e.g.,, tell the current read
to continue where the previous read ended.

Inodes are unique identifiers for a file or directory
within a filesystem mount. The stat family of system calls
report inodes to a user process, and simply reporting a
fixed value is insufficient as many user processes compare
inode values to quickly identify identical files. Instead,
DetTrace maintains a mapping from real (irreproducible)

inodes to reproducible virtual inodes. Special care is
needed to identify when a new file 𝑓 is created, as the
OS may recycle a real inode for 𝑓 but DetTrace must
allocate a new virtual inode to preserve reproducibility
(see file timestamp discussion, next).

File timestamps present a notion of time to user
processes which, unfiltered, could be used to reconstruct
an irreproducible clock. Thus, DetTrace virtualizes file
timestamps. On Linux, each file or directory has three as-
sociated times: time of last content modification (mtime),
time of last access (atime) and time of last content or
metadata modification (ctime). In DetTrace, we always
report atime and ctime as 0. However, we found that
always returning a fixed value for mtime falls afoul of
sanity checks in many programs. For example, configure
from GNU Autotools checks for clock skew by creating a
new file, then comparing its mtime to that of an existing
file, raising an error if the mtimes don’t make sense.

DetTrace implements a mapping between real inodes
and virtual mtime, allowing for a reproducible, but sen-
sible, response from system calls like stat that report
mtime. Whenever a user process opens a file, before the
open call reaches the kernel we check whether a file exists
at the specified path. Before the open call returns to the
process in the container, we identify the underlying real
inode by examining the /proc filesystem to obtain the
path and real inode of the newly-created file descriptor.
By examining the path both before the open call reaches
the OS and afterwards, we can reliably identify when
new files are created. If the file was newly created, we
assign its mtime as the current virtual mtime, and in-
crement the current virtual mtime. Otherwise, the file
existed in the initial container image and we assign it
a virtual mtime of 0. Writes to a file do not currently
update its virtual mtime because we have not found this
necessary in our workloads, however this could easily be
added to provide more realistic-looking virtual mtimes.

For stat calls, we consult our real inode→virtual mtime
map to report mtime appropriately. Any inode without
an entry in the table gets a virtual mtime of 0, as it
must have existed as part of the initial container image.
Our lazy population of inode maps assigns reproducible
virtual inodes and mtimes to every file in the container,
while avoiding the need to index the entire container
image at launch.

5.6 Reproducible Scheduler

DetTrace supports multiple concurrent processes by se-
quentializing system call execution, and allowing pro-
cesses to run in parallel for other operations. Our tracer
makes scheduling decisions at system calls, process spawn,
and process exit.

DetTrace implements a reproducible scheduler, which
consists of three queues. The Parallel queue contains the

Reproducible Containers ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Runnableexit

will block? yesno

process
spawned

system call

Blocked
back

front

back

front

Parallel
back

front

Figure 3. State transitions for a user process in the
DetTrace scheduler.

processes currently running in parallel, and the other
queues contain the processes that currently need to be
scheduled for sequential system call execution. As Fig-
ure 3 shows, processes begin their lives at the back of the
Parallel queue. The process at the front of the Parallel
queue moves to the back of the Runnable queue when
it needs to do a system call. The process at the head of
the Runnable queue is allowed to perform a system call
next, if this system call will not block then the process
returns to Parallel, if it will block then the process moves
to the end of Blocked queue and will be revisited later.
The process at the front of the Blocked queue is then
consulted to see if its system call will still block, and it
moves to Parallel or back to Blocked accordingly.

5.6.1 Blocking System Calls. System calls that may
block exhibit a potential for deadlock with DetTrace’s
sequential system call execution. DetTrace avoids dead-
lock by identifying in advance (and, of course, repro-
ducibly) whether a system call may block. On any given
potentially-blocking system call 𝑠 from a process 𝑝, 𝑠 can
either succeed immediately, or 𝑝 must wait until some
event in another process enables 𝑠 to complete. If the
former, we execute 𝑠, move 𝑝 to the Parallel set, remove
it from the queue it was on, and resume 𝑝 in parallel.
If the latter, we preempt 𝑝 by moving it to the Blocked
queue.

To detect whether a system call will block or not, we
transform blocking calls into non-blocking ones, e.g., a
wait4 call is modified to use the WNOHANG flag. When
the non-blocking system call returns and indicates the
resource is not available, we preempt the process and
move it to the end of the Blocked queue. We reset the
process state to retry the system call in the future.

Some system calls, like a write to a pipe, may unblock
one or more other processes. We do not track such de-
pendencies between processes; when process 𝑝 writes to
a pipe we do not know precisely which Blocked processes

(if any) this will unblock. But, because the scheduler iter-
ates fairly over Runnable, Blocked and Parallel processes,
any unblocked process will eventually run.

5.7 Threads

The ptrace API for threads and processes are identical,
allowing DetTrace to support threads with few exten-
sions to the scheduler. Threads within a process are
sequentialized to render shared memory interactions re-
producible.
The futex system call is Linux’s implementation of

fast, userspace locks. We treat futex wait calls like any
other blocking system call (Section 5.6.1). If threads
busy-wait instead of blocking, our sequential scheduler
fails to make progress, which is one reason a program
may be incompatible with DetTrace (Section 5.9).

5.8 CPU Instructions

While irreproducible CPU instructions cannot be in-
tercepted through ptrace, recent x86 hardware provides
mechanisms for intercepting many irreproducible instruc-
tions (Section 4). Our current DetTrace implementation
intercepts the rdtsc and rdtscp instructions, which return
a count of current cycles, via the prctl system call. For
rdtsc[p], we overwrite their nondeterministic result with
a linear function of rdtsc[p] instructions executed so far.
Additional irreproducible instructions include TSX

instructions, rdrand, rdseed, and cpuid. Serendipitously,
the latter provides a solution to the former: we use
cpuid interception to report the absence of TSX and
hardware randomness support, as described in Section 4
(while adversarial programs can try running them any-
way, supporting such programs is not our target). While
hypervisors have long been able to intercept cpuid, In-
tel’s Ivy Bridge microarchitecture introduces a ring 0
mechanism that the Linux kernel (starting with 4.12)
exports to user-space.

With an Ivy Bridge or newer machine, we can achieve
forward-portability when rerunning a job: pinning the
reported system information, while supporting subse-
quent processors. We also simplify the hardware details
presented to the user process, for example listing a single
core and canonical cache size. This further increases the
equivalence class of machines which must observe the
same answer for a job.
Older Intel architectures, such as Sandy Bridge, lack

user-space cpuid interception, but they also lack rdrand
and TSX. Therefore DetTrace can still run reproducibly
on these older machines, but the portability guarantee
ranges over a much smaller class of machines because
we cannot hide cpuid information.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

read(fd,buf,8)

read(fd,buf+7,1)

retry read

user
process

kernel

read returns 7

read returns 1

DetTrace

read returns 8

1

23

4

56

Figure 4. To render the read system call reproducible,
DetTrace retries read operations that do not return the
requested number of bytes. The solid arrows indicate
what the user process perceives to have occurred. The
dashed arrows indicate extra operations DetTrace un-
dertakes to provide the illusion of reproducibility.

5.9 Unsupported Operations

Here we describe some limitations of our current Det-
Trace prototype. If a user process attempts to use one
of these features, DetTrace raises an error. Section 7.1.1
evaluates in more detail the number of Debian packages
that fail to build due to these reasons.

DetTrace does not support busy-waiting threads be-
cause our scheduler performs context switches for threads
only at thread creation/exit and system calls. Sockets
are also not supported, as arbitrary socket use for net-
work communication is a significant reproducibility chal-
lenge. We plan to investigate limited forms of socket com-
munication, e.g., as interprocess communication within
our container, that can be rendered reproducible.

5.10 System Call Modification

DetTrace uses ptrace to intercept but then skip certain
system calls, e.g., timer calls that DetTrace emulates
internally (Section 5.4). While one cannot directly skip
a system call with ptrace, one can indirectly skip it by
replacing the system call number before it is examined by
the kernel. We use time as a convenient “NOP” system
call that takes no arguments and always succeeds.

We can leverage system call interception to arbitrarily
modify, replay or inject new system calls. As a more
involved example, Figure 4 illustrates the system call
injection we perform when a user process performs a
read system call that requests 8 bytes though the kernel
initially returns only 7. DetTrace adjusts the read argu-
ments to fill in the user buffer with the remaining bytes
and resets the PC to perform another read. Once the
user buffer is full (or we reach EOF), the user process
is allowed to continue past the read call, with the buffer
seemingly filled on the first try.
Sometimes a system call requires that we allocate

memory in the tracee address space. For example, the

utime system call sets the atime and mtime for a file at
a given path. If the times are specified as null, then the
kernel sets the atime/mtime to the current time. To avoid
the kernel setting irreproducible timestamps, DetTrace
needs to allocate a timestamp struct in the tracee address
space, initialized with reproducible timestamps, and call
utime with this struct as an argument. To this end,
DetTrace allocates a page of memory in each tracee’s
address space after each execve system call. Our custom
timestamp struct is allocated from this page, to avoid
perturbing the tracee’s heap or stack.

5.11 Improving performance with seccomp-bpf

By default ptrace stops the tracee for every system
call twice, but Linux’s seccomp-bpf mechanism allows
for selective system call interception, avoiding overhead
on system calls that are naturally reproducible in our
environment (like getcwd). seccomp also allows the inter-
ception code, which runs before a system call reaches the
kernel, to dynamically decide whether or not to intercept
after the system call completes, further reducing over-
head. Linux kernel versions >= 4.8 additionally optimize
context switches by delivering a single event instead of
separate pre-system-call and seccomp events. We sup-
port kernel versions < 4.8 by falling back to the slower
implementation.

6 Experimental Methodology
We ran our package build evaluation using Debian 7
(Wheezy) packages, a stable version first released in May
2013 which contains 17,145 packages total. We chose this
version of Debian to avoid confounding effects from the
efforts of the Debian Reproducible Builds project, which
began in late 2013. We wanted to capture an accurate
pre-DRB picture of the Debian package ecosystem.
We build our packages on CloudLab c220g5 nodes,

where each node has two Intel Xeon Silver 4114 Skylake
processors, each with 10 cores (20 threads) running at
2.2GHz, and 192GB of RAM. These processors support
interception of the cpuid instruction (Section 5.8). We
use the full seccomp-bpf optimizations. Each node runs
Ubuntu 18.04 LTS with the Linux 4.15 kernel.
For our bioinformatics workflows, we used RAxML

8.2.10 with AVX support [33], Clustal 2.1 in -ALIGN
mode [34] and HMMER 3.1b2 [35]. We used TensorFlow
v1.14 in our ML experiments, using the alexnet and
cifar10 tutorials [36] to perform model creation, training
and inference. Bioinformatics and ML workloads run on
a machine with two Intel Xeon E5-2618Lv3 (Haswell)
processors each with 8 cores (16 threads) running at
2.3GHz, and 128GB of RAM. The machine runs Ubuntu
18.10 with Linux 4.18.

Reproducible Containers ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

6.1 Verifying Reproducibility

Package builds. We build packages, both with and
without DetTrace, inside a fresh Docker instance to easily
control filesystem state.3 Inside the container, we use a
slightly modified version of the reprotest utility version
0.7.8 [37] from the DRB project. reprotest builds each
package twice, varying the conditions for each build to
exacerbate irreproducibility. We configure reprotest to
vary environment variables, build path, ASLR, number
of CPUs, time, user groups, home directory, locales, exec
path, and timezone. We turn off domain host, kernel,
and file ordering as they are not supported by the older
version of Debian we’re running our builds in. Similarly,
the umask variation would randomize file permissions
which DetTrace does not hide from user processes.

By default reprotest chooses variations randomly; we
modified it to use a consistent configuration for the first
build of all packages, and a different consistent config-
uration for all second builds, so that exactly the same
environment is presented to DetTrace as in the baseline.
We create a control-chroot of a minimal Wheezy instal-
lation, downloading the source via apt-get source, then
installing a package’s dependencies via apt-get build-dep
(referencing an on-disk mirror to avoid network requests
and ensure consistency across builds). Finally we copy
the control-chroot to create an experiment-chroot, thus
guaranteeing the same starting image for both builds.
reprotest takes these starting chroots for running dpkg-
buildpackage with or without DetTrace. When using
DetTrace, everything dpkg-buildpackage does runs under
DetTrace, which includes compilation, running tests (if
the package is configured to do so), and creating the
final .deb package. After both builds are complete, re-
protest validates reproducibility with bitwise comparison
of the two .deb packages. reprotest calls another DRB
tool diffoscope which compares two directories, checking
for bitwise identical contents. If diffoscope reports no
differences the package is deemed reproducible, otherwise
the package is deemed irreproducible.
Under this Debian/reprotest configuration 15,761, or

91.9%, of the total available packages build completely,
whereas 40 time-out after 30 minutes and 1,344 fail to
build. For the evaluation in the next section, we focus
on the set of 15,761 packages that build in the baseline,
whether reproducibly or irreproducibly. In fact, in a stock
Wheezy system, zero packages build reproducibly be-
cause of timestamps embedded by tar. So we adjust our
driver script to unpack the deb packages using dpkg-deb,
then run strip-nondeterminism [38] on the individual files,

3DetTrace can also provide an isolated filesystem environment,

but Docker provides easy image distribution across our cluster.
DetTrace nests within Docker without issue.

stripping timestamps. Finally, diffoscope can do a mean-
ingful bitwise comparison. The DetTrace builds do not
require this workaround, as they are naturally robust to
timestamps. With the tar-timestamp workaround, 3,803
(24.1%) packages are reproducible in a stock Wheezy
system. The other 11,958 packages require additional
manual intervention to achieve reproducibility.

Bioinformatics. While we did not leverage an adver-
sarially-irreproducible environment like reprotest for the
bioinformatics tools, using hashdeep on the outputs from
HMMER and RAxML revealed irreproducibility across
consecutive runs on a single machine. We confirmed (us-
ing hashdeep) that the irreproducibility is removed when
running under DetTrace. The clustal workflow appeared
reproducible, both natively and with DetTrace.

Machine Learning. To check the reproducibility of
our TensorFlow workloads, we recorded the value of the
loss function at each step during training. Unsurprisingly,
these values are irreproducible when running natively,
even with serialized TensorFlow (see Section 7.6), due to,
e.g., randomization of the training set. DetTrace renders
these workloads reproducible without any code changes.

7 Evaluation
In this section, we describe our results using the DetTrace
system with software builds, and bioinformatics and
machine learning applications.

7.1 Package Build Reproducibility

Package builds can fall into one of four categories when
building under DetTrace. Some package builds are re-
producible or irreproducible as described in Section 6.1.
Timeout packages do not finish building within 2 hours.
We allot a high timeout for DetTrace to account for
its performance overheads and to avoid eliding high
slowdowns from our performance evaluation. Lastly, a
package may be unsupported for a variety of reasons we
discuss in Section 7.1.1.
Of the 12,130 packages that DetTrace supports (i.e.,

the build with DetTrace is neither unsupported nor does
it timeout), DetTrace is able to render every single pack-
age reproducible. This represents over 800 million (non-
comment/non-blank) lines of code from over 3.3 million
source files building under DetTrace.

Table 1 shows how package status changes when mov-
ing from the baseline to DetTrace and vice-versa, focus-
ing just on those packages that build (reproducibly or
irreproducibly) in the baseline. The top table shows what
happens to baseline packages when run with DetTrace.
For example, the first row shows that of the 11,958 pack-
ages that are irreproducible in the baseline, 8,688 of them
are automatically rendered reproducible by DetTrace.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

Given DT Reproducible DT Irreproducible DT Unsupported DT Timeout

BL Irreproducible (11,958) 72.65% (8,688) 0% (0) 15.99% (1,912) 11.36% (1,358)
BL Reproducible (3,803) 90.51% (3,442) 0% (0) 3.60% (137) 5.89% (224)

Given BL Reproducible BL Irreproducible

DetTrace Reproducible (12,130) 28.38% (3,442) 71.62% (8,688)
DetTrace Timeout (1,582) 14.16% (224) 85.84% (1,358)

DetTrace Unsupported (708) 7.91% (56) 92.09% (652)

Table 1. (Top) How build status changes moving from the baseline (BL) to DetTrace (DT), and from DT to BL
(bottom). DetTrace automatically renders reproducible 72.65% of packages that are irreproducible in the baseline.

Reassuringly, packages that are reproducible in the base-
line never become irreproducible under DetTrace.

The bottom table in Table 1 shows, for a package with
a given DetTrace status, what happens in the baseline.
Packages that timeout or are unsupported by DetTrace
are very commonly irreproducible in the baseline, sug-
gesting these are more complicated builds.

7.1.1 Unsupported Packages. A total of 1,912 pack-
ages failed to build due to known DetTrace limitations.
The most frequently encountered issue was busy waiting,
which arose for 876 Java packages (45.8% of failures)
that fail to build. The next most common reasons are
socket operations (302 packages, 15.8%), and sending
intra-process signals (79 packages, 4%) The rest form
a long tail of miscellaneous system calls DetTrace does
not yet support. Other cases of busy waiting result in a
timeout.

7.1.2 Comparison with DRB. 407 of the packages
that are reproducible under DetTrace are identified as
irreproducible in the current stretch release by DRB [39].
While those packages are newer than the Wheezy ver-
sions we use, the DRB effort has also categorized why
these packages are irreproducible. Common reasons in-
clude build paths being captured in a build artifact,
timestamps embedded in files and randomness affecting
build artifacts. Though these issues have been resolved
in hundreds of other packages, each package requires an-
alyzing the cause of irreproducibility and getting patches
accepted by maintainers. In contrast, DetTrace automat-
ically makes a build immune to such variations.

7.1.3 Comparison with Mozilla rr. Record-and-replay
(RnR) systems are similar to DetTrace in needing to
intercept sources of nondeterminism. However, record-
and-replay systems do not directly facilitate reproducible
builds, as opaque recording files do not enable one to
inspect the source code of a package. Recordings also
require storage, typically much more than pure source
code. We undertook a small experiment with the latest
version (5.2.0) of the rr tool, as it is the most robust
RnR system we are aware of. We selected 81 packages

that build from source natively in Ubuntu 18.04 (to
provide a more modern build environment for rr than
Debian Wheezy), and tried building them with rr. Un-
fortunately, rr crashed on 46 of them due to a known
bug with unsupported ioctl calls. Of the 35 packages
that build with rr, the average runtime overhead was
5.8× (ranging from 3.3-22.7×), comparable to DetTrace.
Unlike RnR, DetTrace avoids opaque recordings and
provides a human-readable audit trail from inputs to
outputs.

7.2 Package Build Correctness

To validate the functional correctness of DetTrace, we
used several of the packages built using our system to
ensure they work correctly. For example, we built the
popular 3D graphics package blender with DetTrace,
installed the resulting .deb on a Debian wheezy virtual
machine, and used the UI to render a sample project.
We built the core TeX/LaTeX packages using DetTrace
and used them to build the paper you’re reading.

To validate DetTrace’s correctness on a complex soft-
ware system, we first built the LLVM 3.0 compiler from
source without using DetTrace. We ran LLVM’s test
suite via the make check finding that 5,594 tests pass,
48 expectedly fail and 15 are unsupported in this base-
line configuration. We then ran the LLVM build under
DetTrace (using a version of clang built with DetTrace
as well) and received the same test outcomes. Given
the complexity of the LLVM source code, we find these
results with “self-hosting” LLVM encouraging evidence
that software built using DetTrace functions correctly.

7.3 Package Build Portability

To evaluate DetTrace’s portability, we perform package
builds on two different machines with different microar-
chitectures and OS versions. One machine is our stan-
dard CloudLab node (described in Section 6) and the
other has Intel Xeon E5-2620 v4 processors (Broadwell
instead of Skylake) running Ubuntu 18.10 (instead of
18.04, Linux versions 4.18 and 4.15, respectively). We use
the same reprotest-based build methodology to perturb
the environment, and ensure that each build on each

Reproducible Containers ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

machine produces a bitwise-identical package. Due to
time constraints, we randomly selected 1,000 packages
reproducible with DetTrace. Every one built identically
across the two systems.

Achieving portability for these packages required one
extension to DetTrace. We found that the size of a direc-
tory (returned by stat) varied across machines, though
the directory contents were identical, were created via
extraction from the same tarball, and the filesystem type
and block size were the same. This behavior had not
arisen across any of our previous experiments which used
a single machine type, empirically illustrating the dis-
tinction between portability and determinism. DetTrace
implements reproducible directory sizes by reporting
sizes as a deterministic function of the number of direc-
tory entries.

7.4 Package Build Performance

DetTrace is designed for reproducibility, but is only
moderately optimized for performance overheads. Con-
sidering builds in aggregate, DetTrace incurs an total
3.49× slowdown in wall clock time. Figure 5 shows a scat-
ter plot for 860 randomly-selected DetTrace-supported
packages, showing DetTrace’s slowdown over the baseline
(log scale) against the build’s rate of system calls per
second (as measured by DetTrace). We exclude builds
that run for less than 5 seconds in the baseline, and we
run just one package build per machine to avoid perfor-
mance interference. We crop a few outliers from the plot
to make it easier to read: 4 packages that perform more
than 25,000 syscalls/second (the max is 82,533 for the)
and exhibit slowdowns from 3.97-30.11×, and 3 packages
that run about twice as fast with DetTrace than in the
baseline—though they appear to build correctly, e.g.,
their internal tests all pass at the end of the build.
The light orange dots in Figure 5 show packages

that do not use threads, while the dark blue dots show
threaded packages. Overall, there is a positive correla-
tion between DetTrace overhead and system call rate.
Though there are just 76 threaded packages in this sam-
ple, they exhibit some of the highest slowdowns due to
common futex operations being converted from blocking
to non-blocking.
We find that system calls are frequent in package

builds, with over 800,000 in an average build (Table 2).
We also find many potential sources of irreproducibility
in all of our packages. rdtsc instructions are used by
the loader ld for internal profiling, and by libc to gen-
erate temporary file names for gcc. gcc also reads from
/dev/urandom to produce unique symbol names.

7.5 Bioinformatics Workflows

Our three bioinformatics workflows use process-level par-
allelism for performance, and exhibit a range of overheads

0K 5K 10K 15K 20K 25K

system calls per second

1

2

5

10

20

50

D
et

Tr
ac

e
sl

ow
do

w
n

(x
)

Figure 5. DetTrace overhead (y-axis, log scale) is largely
driven by the rate at which system calls are performed
(x-axis). Packages that use threads (dark blue dots) are
typically slower than those that do not (light orange
dots).

clustal
 native DT

hmmer
 native DT

raxml
 native DT

1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16

1

2

3

4

5

6

7

8

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l n

at
iv

e

1.00

1.98

4.24

0.85

2.01

4.17

1.00

2.96

7.46

0.66

2.24

4.78

1.00

2.76

6.88

0.29
0.86 1.11

Figure 6. Speedup of bioinformatics workflows with
1, 4 & 16 parallel processes, normalized to sequential
native execution (higher is better). Dark blue bars are
native execution, and light orange bars are DetTrace.

with DetTrace, dictated by the degree to which they are
compute-bound. Figure 6 shows the speedup each work-
load observes with more parallel processes, normalized to
sequential native execution. The highly compute-bound
clustal performs the best, scaling well with additional
processes and exhibiting under 2% overhead with 16 pro-
cesses. In contrast, hmmer and raxml execute system calls
at a rate 19× higher (over 55,000/second on average),
incurring more serialization. raxml in particular writes
to stdout frequently, which are potentially-blocking op-
erations that are more expensive for DetTrace, resulting
in 6.2× overhead with 16 processes. hmmer has more
non-blocking system calls which enable better scaling,
and just 1.56× overhead with 16 processes.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

System call events 843,621.53
User process memory reads 396,474.88
rdtsc intercepted 33,487.55
Requests for scheduling next process 6,049.51
Replays due to blocking system call 1,283.72
Process spawn events 2,377.54
read retries 141.28
/dev/urandom opens 159.92
write retries 113.98

Table 2. Per-package average number of events encoun-
tered by DetTrace.

7.6 TensorFlow

We ran the alexnet and cifar10 programs in three config-
urations, each of which run exclusively on the CPU: 1)
natively in parallel, 2) natively but with TensorFlow con-
figured to use a single thread and 3) with DetTrace. Since
TensorFlow uses thread-level parallelism via OpenMP,
DetTrace’s serialized threading incurs a large slowdown
over native parallel execution on 16 cores: it is 17.49×
slower on alexnet and 11.94× on cifar10. Compared to se-
rialized native execution, however, DetTrace fares much
better with slowdowns of 1.51× and 1.08×, respectively,
reinforcing that DetTrace exacts a small performance
price for non-threaded compute-bound workloads.

8 Related Work
DetTrace’s unique reproducible container abstraction
takes inspiration from many previous systems. We cate-
gorize this previous work into record-and-replay systems,
and deterministic execution systems.

Many record and replay (RnR) systems have been
proposed both from academia [40–46] and industry [47–
49]. These systems record a trace of one nondeterministic
execution to enable subsequent replay of that execution,
typically for debugging purposes. These systems have
broadly similar interception requirements as DetTrace,
since system calls are a prime source of irreproducibility
that must be recorded in the trace. DetTrace borrows
some implementation techniques from Mozilla’s rr [47]
as it also relies on ptrace (a quantitative comparison
with rr appears in Section 7.1.3). Many RnR systems
target multithreaded workloads, as those are very chal-
lenging to debug without RnR support, and provide
high-performance parallel recording and replaying.

Deterministic execution schemes enforce determin-
ism during program execution. Deterministic operating
systems tackle several of the systems issues we describe
in this paper, providing deterministic versions of OS
abstractions like processes and threads. While Determi-
nator [12] provides new OS abstractions for deterministic

fork-join parallelism, and DDOS [13] focuses on local
network interactions, dOS [14] is closer to our work
in offering a deterministic process group abstraction.
The shim abstraction in dOS bears similarity to Linux’s
ptrace API. Unlike DetTrace, dOS supports parallel exe-
cution of both threads and processes. However, dOS uses
RnR for filesystem interactions, defining the boundaries
of its determinism abstraction too narrowly to be useful
for software builds which interact extensively with the
filesystem. More generally, a custom OS is a heavyweight
prerequisite to perform deterministic computation, and
existing deterministic OSes have not evaluated portabil-
ity across different microarchitectures.

Other deterministic execution schemes focus on a sin-
gle multithreaded process, determinizing interactions
through shared memory. Some schemes target arbitrary
binary programs [50–58], providing generality at a mod-
est performance overhead. Other schemes leverage lan-
guage support to provide determinism for Haskell [10,
26, 59–62] or Java [9, 63] programs. Whether language-
agnostic or specific, these approaches eliminate the in-
fluence of thread scheduling, but do not determinize IO
interactions with the underlying OS and filesystem. The
scope of their guarantees is thus too small to be useful
for reproducible builds. One exception is DetFlow [11]
which provides deterministic parallel execution for batch
jobs, though it lacks robust system call interception and
requires a coordinator layer written in Haskell.

9 Conclusions
We have described the design and implementation of Det-
Trace, which provides a new reproducible container ab-
straction. DetTrace automatically provides reproducibil-
ity for software builds, bioinformatics processing and
ML workflows without requiring any changes to the
hardware, OS, or application code. To facilitate further
experimentation with DetTrace, we plan to open-source
its code upon publication.

Acknowledgments
This work is supported by the National Science Founda-
tion under grant #1703541. Opinions or findings in this
material are the authors’ and do not necessarily reflect
the views of the NSF.

References
[1] Bazel. https://bazel.build/.
[2] ReproducibleBuilds.

https://wiki.debian.org/ReproducibleBuilds.
[3] Pachyderm reproducible data science homepage. https://www.

pachyderm.io.
[4] Code Ocean homepage. https://codeocean.com.
[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel.

Implementation and performance of munin. SIGOPS Oper.
Syst. Rev., 25(5):152–164, September 1991.

https://bazel.build/
https://wiki.debian.org/ReproducibleBuilds
https://www.pachyderm.io
https://www.pachyderm.io
https://codeocean.com

Reproducible Containers ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

[6] Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett, Se-
bastian Burckhardt, Badrish Chandramouli, Darren Gehring,

Niel Lebeck, Umar Farooq Minhas, Ryan Newton, Ra-

hee Ghosh Peshawaria, et al. Ambrosia: Providing performant
virtual resiliency for distributed applications. Technical report,

Technical report, 2018. https://aka. ms/amb-tr, 2018.
[7] Fred B. Schneider. Implementing fault-tolerant services using

the state machine approach: A tutorial. ACM Comput. Surv.,

22(4):299–319, December 1990.
[8] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel.

Peerreview: Practical accountability for distributed systems.

SIGOPS Oper. Syst. Rev., 41(6):175–188, October 2007.
[9] Robert Bocchino, Mohsen Vakilian, Vikram Adve, Danny Dig,

Sarita Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey

Overbey, Patrick Simmons, and Hyojin Sung. A type and
effect system for deterministic parallel java. In Proceeding

of the 24th ACM SIGPLAN conference on Object oriented

programming systems languages and applications - OOPSLA
’09, page 97, Orlando, Florida, USA, 2009.

[10] Simon Marlow, Ryan R. Newton, and Simon Peyton Jones.
A monad for deterministic parallelism. In Proceedings of the

4th ACM symposium on Haskell, Haskell ’11, pages 71–82.
ACM, 2011.

[11] Ryan G. Scott, Omar S. Navarro Leija, Joseph Devietti,

and Ryan R. Newton. Monadic composition for determinis-
tic, parallel batch processing. Proc. ACM Program. Lang.,
1(OOPSLA):73:1–73:26, October 2017.

[12] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford.
Efficient system-enforced deterministic parallelism. In Pro-
ceedings of the 9th USENIX Conference on Operating Systems

Design and Implementation, 2010.
[13] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble.

DDOS: taming nondeterminism in distributed systems. In

Proceedings of the eighteenth international conference on Ar-
chitectural support for programming languages and operating

systems, volume 48, pages 499–508, March 2013.

[14] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven Gribble.
Deterministic process groups in dOS. In Proceedings of the

9th USENIX Conference on Operating Systems Design and

Implementation, 2010.
[15] Abadi, Daniel J. and Faleiro, Jose M. An Overview of De-

terministic Database Systems. Communications of the ACM,

61(9):78–88, August 2018.
[16] Raymond Chen. Why are the module timestamps in Win-

dows 10 so nonsensical? https://blogs.msdn.microsoft.com/
oldnewthing/20180103-00/?p=97705.

[17] Jared Parsons. Deterministic builds in Roslyn.

http://blog.paranoidcoding.com/2016/04/05/deterministic-
builds-in-roslyn.html.

[18] tar: please add –clamp-mtime to only update mtimes after
a given time. https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=790415., June 2015.

[19] Jeremy Bobbio. Reproducible Builds for Debian, a year

later. https://summit.debconf.org/debconf14/meeting/78/
reproducible-builds-for-debian/.

[20] Ren, Zhilei and Jiang, He and Xuan, Jifeng and Yang, Zi-
jiang. Automated Localization for Unreproducible Builds. In

Proceedings of the 40th International Conference on Software

Engineering, ICSE ’18, pages 71–81, New York, NY, USA,
2018. ACM.

[21] National Academies of Sciences, Engineering, and Medicine.

Reproducibility and Replicability in Science. The National
Academies Press, Washington, DC, 2019.

[22] Rosemary Nan Ke and Alex Lamb and Olexa Bilaniuk
and Anirudh Goyal and Yoshua Bengio. Reproducibility

in Machine Learning: An ICLR 2019 Workshop. https:
//sites.google.com/view/icml-reproducibility-workshop/home.

[23] Daniel Maskit. Problems Getting TensorFlow to behave

Deterministically. https://github.com/tensorflow/tensorflow/
issues/16889.

[24] Jennifer Villa and Yoav Zimmerman. Reproducibility in ML:

why it matters and how to achieve it. https://determined.ai/
blog/reproducibility-in-ml/, May 2018.

[25] Li Lu and Michael L. Scott. Toward a formal semantic frame-

work for deterministic parallel programming. In Proceedings of
the 25th International Conference on Distributed Computing,

DISC’11, page 460–474, Berlin, Heidelberg, 2011. Springer-

Verlag.
[26] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami,

and Ryan R. Newton. Freeze after writing: quasi-deterministic

parallel programming with lvars. In POPL, pages 257–270,
2014.

[27] Gerald J. Popek and Robert P. Goldberg. Formal requirements
for virtualizable third generation architectures. Commun.

ACM, 17(7):412–421, July 1974.

[28] Christopher Domas. Breaking the x86 Instruction Set.
Black Hat, 2017. https://www.youtube.com/watch?v=
KrksBdWcZgQ.

[29] Intel 64 and IA-32 Architectures Software Developer Manuals.
https://software.intel.com/en-us/articles/intel-sdm.

[30] Intel Xeon Processor E3-1200 v3 Product Family.
https://www.intel.com/content/dam/www/public/us/en/
documents/specification-updates/xeon-e3-1200v3-spec-
update.pdf, July 2018. HSW136: Software Using Intel TSX
May Result in Unpredictable System Behavior.

[31] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gum-

madi. Determinating timing channels in compute clouds. In
Proceedings of the 2010 ACM workshop on Cloud computing

security workshop, CCSW ’10, page 103–108, New York, NY,

USA, 2010. ACM.
[32] Marek Olszewski, Jason Ansel, and Saman Amarasinghe.

Kendo: Efficient deterministic multithreading in software. In

Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating

Systems, ASPLOS XIV, pages 97–108, New York, NY, USA,

2009. ACM.
[33] Alexandros Stamatakis. Raxml version 8: a tool for phyloge-

netic analysis and post-analysis of large phylogenies. Bioin-
formatics, 30(9):1312, 2014.

[34] Ramu Chenna, Hideaki Sugawara, Tadashi Koike, Rodrigo

Lopez, Toby J. Gibson, Desmond G. Higgins, and Julie D.
Thompson. Multiple sequence alignment with the clustal series

of programs. Nucleic Acids Research, 31(13):3497, 2003.
[35] Sean R. Eddy. Profile hidden markov models. Bioinformatics,

14(9):755–763, 1998.

[36] tensorflow. Models and examples built with Tensor-

Flow. https://github.com/tensorflow/models/tree/master/
tutorials/image. Commit 583408.

[37] Reprotest GitLab page. https://salsa.debian.org/reproducible-
builds/reprotest.

[38] strip-nondeterminism Debian Package Description. https:
//packages.debian.org/sid/strip-nondeterminism.

[39] Packages in Stretch/Amd64 Which Failed to Build Repro-

ducibly. https://tests.reproducible-builds.org/debian/stretch/
amd64/index FTBR.html.

[40] Thomas J. Leblanc and John M. Mellor-Crummey. Debugging

parallel programs with instant replay. IEEE Transactions on

https://blogs.msdn.microsoft.com/oldnewthing/20180103-00/?p=97705
https://blogs.msdn.microsoft.com/oldnewthing/20180103-00/?p=97705
http://blog.paranoidcoding.com/2016/04/05/deterministic-builds-in-roslyn.html
http://blog.paranoidcoding.com/2016/04/05/deterministic-builds-in-roslyn.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=790415
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=790415
https://summit.debconf.org/debconf14/meeting/78/reproducible-builds-for-debian/
https://summit.debconf.org/debconf14/meeting/78/reproducible-builds-for-debian/
https://sites.google.com/view/icml-reproducibility-workshop/home
https://sites.google.com/view/icml-reproducibility-workshop/home
https://github.com/tensorflow/tensorflow/issues/16889
https://github.com/tensorflow/tensorflow/issues/16889
https://determined.ai/blog/reproducibility-in-ml/
https://determined.ai/blog/reproducibility-in-ml/
https://www.youtube.com/watch?v=KrksBdWcZgQ
https://www.youtube.com/watch?v=KrksBdWcZgQ
https://software.intel.com/en-us/articles/intel-sdm
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e3-1200v3-spec-update.pdf
https://github.com/tensorflow/models/tree/master/tutorials/image
https://github.com/tensorflow/models/tree/master/tutorials/image
https://salsa.debian.org/reproducible-builds/reprotest
https://salsa.debian.org/reproducible-builds/reprotest
https://packages.debian.org/sid/strip-nondeterminism
https://packages.debian.org/sid/strip-nondeterminism
https://tests.reproducible-builds.org/debian/stretch/amd64/index_FTBR.html
https://tests.reproducible-builds.org/debian/stretch/amd64/index_FTBR.html

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

Computers, C-36(4):471–482, April 1987.
[41] Michiel Ronsse and Koen De Bosschere. RecPlay: a fully

integrated practical record/replay system. ACM Transactions

on Computer Systems, 17(2):133–152, May 1999.
[42] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn,

and Peter M. Chen. Eidetic systems. In Proceedings of the
11th USENIX Conference on Operating Systems Design and

Implementation, OSDI’14, pages 525–540, Berkeley, CA, USA,

2014. USENIX Association.
[43] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan,

Satish Narayanasamy, Peter M. Chen, and Jason Flinn. Re-

spec: efficient online multiprocessor replayvia speculation and
external determinism. In Proceedings of the fifteenth edition of

ASPLOS on Architectural support for programming languages

and operating systems - ASPLOS ’10, page 77, Pittsburgh,
Pennsylvania, USA, 2010.

[44] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David

Mazieres, and Mendel Rosenblum. Towards practical default-
on multi-core record/replay. In Proceedings of the Twenty-

Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS

’17, pages 693–708, New York, NY, USA, 2017. ACM.

[45] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A.
Basrai, and Peter M. Chen. Revirt: Enabling intrusion analysis

through virtual-machine logging and replay. SIGOPS Oper.
Syst. Rev., 36(SI):211–224, December 2002.

[46] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fet-

terman, and Peter M. Chen. Execution replay of multipro-
cessor virtual machines. In Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Ex-

ecution Environments, VEE ’08, pages 121–130, New York,
NY, USA, 2008. ACM.

[47] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey,

Albert Noll, and Nimrod Partush. Engineering record and
replay for deployability. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pages 377–389, Santa Clara,

CA, 2017. USENIX Association.
[48] VMware: VMware workstation zealot: Enhanced execution

record / replay in workstation 6.5, April 2008.

[49] Program Record/Replay Toolkit. https://software.intel.com/
en-us/articles/program-recordreplay-toolkit.

[50] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin.

DMP: deterministic shared memory multiprocessing. In Pro-
ceedings of the 14th international conference on Architectural
support for programming languages and operating systems
(ASPLOS ’09), page 85, Washington, DC, USA, 2009.

[51] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and

Dan Grossman. Coredet: a compiler and runtime system for
deterministic multithreaded execution. In ACM SIGARCH

Computer Architecture News, volume 38, pages 53–64. ACM,
2010.

[52] Derek R. Hower, Polina Dudnik, David A. Wood, and Mark D.

Hill. Calvin: Deterministic or not? free will to choose. In

Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), 2011.

[53] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and
Dan Grossman. RCDC: a relaxed consistency deterministic

computer. In Proceedings of the sixteenth international con-

ference on Architectural support for programming languages
and operating systems, 2011.

[54] Tongping Liu, Charlie Curtsinger, and Emery D. Berger.

Dthreads: efficient deterministic multithreading. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating

Systems Principles, SOSP ’11, pages 327–336, New York, NY,

USA, 2011.
[55] Timothy Merrifield and Jakob Eriksson. Conversion: multi-

version concurrency control for main memory segments. In

Proceedings of the 8th ACM European Conference on Com-
puter Systems, EuroSys ’13, pages 127–139, New York, NY,

USA, 2013. ACM.
[56] Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. Ef-

ficient deterministic multithreading without global barriers.

In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, February

2014.

[57] Timothy Merrifield, Joseph Devietti, and Jakob Eriksson.
High-performance determinism with total store order consis-

tency. In Proceedings of the Tenth European Conference on

Computer Systems, EuroSys ’15, pages 31:1–31:13, New York,
NY, USA, 2015. ACM.

[58] Timothy Merrifield, Sepideh Roghanchi, Joseph Devietti, and

Jakob Eriksson. Lazy determinism for faster deterministic
multithreading. In Proceedings of the Twenty-Fourth Interna-

tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, pages 879–

891, New York, NY, USA, 2019. ACM.

[59] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Pey-
ton Jones, Gabriele Keller, and Simon Marlow. Data parallel

haskell: A status report. In Proceedings of the 2007 Workshop
on Declarative Aspects of Multicore Programming, DAMP
’07, pages 10–18, New York, NY, USA, 2007. ACM.

[60] Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl,
Mustafa K Aswad, and Phil Trinder. Seq no more: bet-
ter strategies for parallel haskell. In ACM Sigplan Notices,

volume 45, pages 91–102. ACM, 2010.
[61] Ryan R. Newton, Ömer S. Ağacan, Peter Fogg, and Sam

Tobin-Hochstadt. Parallel type-checking with haskell using

saturating lvars and stream generators. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’16, pages 6:1–6:12, New

York, NY, USA, 2016. ACM.
[62] Daan Leijen, Manuel Fahndrich, and Sebastian Burckhardt.

Prettier concurrency: Purely functional concurrent revisions.

In Proceedings of the 4th ACM Symposium on Haskell, Haskell
’11, pages 83–94. ACM, 2011.

[63] Robert L. Bocchino and Vikram S. Adve. Types, regions,

and effects for safe programming with object-oriented parallel
frameworks. In Proceedings of the 25th European Conference
on Object-oriented Programming, ECOOP’11, pages 306–332,
Berlin, Heidelberg, 2011. Springer-Verlag.

A Artifact Appendix
A.1 Abstract

This artifact description gives an overview of the com-
mand line interface for DetTrace as well as common
DetTrace workflows. We describe the steps necessary
to build DetTrace, software dependencies, hardware re-
quirements, and compiler toolchains. Furthermore, we
show various example use-cases for DetTrace and using
chroot environments.

A.2 Artifact check-list (meta-information)

∙ Program: DetTrace: A Deterministic Container.
∙ Compilation: Any C++ compiler with C++14 sup-
port. Verified to compile with both g++ and clang++.

https://software.intel.com/en-us/articles/program-recordreplay-toolkit
https://software.intel.com/en-us/articles/program-recordreplay-toolkit

Reproducible Containers ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

∙ Run-time environment: Linux x86-64. Optimized
for kernel versions ≥ 4.8. Works on ≤ 4.8 kernel version
using slower methods (see paper for more information).
Kernel version ≥ 4.12 required for CPUID intercep-
tion. DetTrace is untested for kernel version ≥ 5.13
but should work with minor modifications or future
updates. Linux namespaces enabled required.

∙ Hardware: Intel x86-64 CPU. To intercept CPUID,
the CPU must support this feature.

∙ Output: DetTrace will produce a deterministic, re-
producible output of whichever command runs under
it. (See more below).

∙ Publicly available?: Yes
∙ Code licenses (if publicly available)?: MIT
∙ Archived (provide DOI)?: 10.5281/zenodo.3562526

A.3 Description

A.3.1 How delivered. The latest version of DetTrace can
be found on GitHub. A more permanent but perhaps older
version exists at
https://zenodo.org/record/3562526.

A.3.2 Hardware dependencies. The DetTrace proto-
type currently only works for x86-64 Intel CPUs. While
not strictly necessary, the CPU must have support for in-
tercepting certain nondeterministic CPU instructions, e.g.
CPUID.

A.3.3 Software dependencies. DetTrace works well with
kernel versions 4.8 and< 5.3 (only minor modifications should
be necessary to allow DetTrace to work in newer kernel ver-
sions). Kernel version ≤ 4.8 use a slower ptrace implementa-
tion (more details in paper above), making overall execution
of DetTrace slower. Kernel version ≥ 4.12 are required for
OS support for CPUID interception. Currently DetTrace has
a few dependencies:

∙ libssl: Hashing implementation for bytes from read
system call (Useful for debugging nondeterministic
bytes read from pipe).

∙ libseccomp: Helper library for finer-grained system call
filtering using seccomp-bpf.

∙ libarchive: Unpackaging archive files used by DetTrace.
∙ libelfin: ELF/DWARF parser.
∙ libfuse: Running tests only. Used for filesystem tests.

These dependencies are fairly common and should be easy
to install from your Linux distro’s package manager. For
Apt these are libarchive-dev, libssl-dev, and libseccomp-dev,
libelfin-dev, and libfuse-dev.

DetTrace relies on various Linux namespaces for isolation
and determinism. Some systems disable user namespaces
by default. You may encounter a clone failed: operation not
permitted error. If so, please enable user namespace access
(the exact method may depend on your distro and OS ver-
sion). Furthermore, Linux does not allow user namespaces
for processes whose root is not / (the chroot system call was
executed at some point).

A.3.4 Data sets. While DetTrace is designed to enforce
reproducibility for arbitrary computation, the prototype im-
plementation was overfitted to work with Debian packages

and chroot environments. The Debian Apt Package Reposi-
tory and chroot images available through debootstrap may
be of interest. Our prototype built mostly Debian Wheezy
packages, newer Debian version may execute system calls not
currently implemented in DetTrace.

A.4 Installation

DetTrace uses a standard Makefile for compilation. Assuming
you have the all the software dependencies (above), and a
C++ compiler supporting C++14, running make in the root
directory of the repository will generate the DetTrace binary
under bin/. DetTrace may also be statically linked using
make static assuming all the correct dependencies are present
as statically linkable objects. DetTrace may be installed
anywhere on the system by moving the bin/ directory along
with the root/ directory. This directory structure must be
maintained as the DetTrace binary always expects root/ to
be located ../root relative to the location of the DetTrace
binary (see reasoning below).

The word chroot is unfortunately overloaded, both referring
to the Linux system call which changes the location of the
root directory for a process, and for the concept of a directory
tree which ”look like” a Linux filesystem, containing all the
binaries, libraries, and special files (e.g. /proc, /dev) necessary
for a Linux system to function.

The Debian command debootstrap is an easy way to get
such a chroot environment. For more information see:
https://wiki.debian.org/chroot.

If you’re using a different Linux distribution, you should
consult the documentation to find the appropriate way to
install a chroot. You can install debootstrap from the Apt
repository. sudo apt install debootstrap.

One can install a Stretch Debian chroot by running the
commands:

$ mkdir stretch

$ sudo debootstrap stretch stretch/ \

http://deb.debian.org/debian

Unfortunately, this requires root to work. Once you have
downloaded the chroot, you should have a ‘stretch‘ directory
which we can ‘ls‘:

$ ls stretch

bin/ dev/ home/ lib64/ mnt/ proc/ run/

boot/ etc/ lib/ media/ opt/ root/ sbin/

As you can see, this looks just like a Linux filesystem tree.
DetTrace accepts any such chroot to be used as the starting
image. As DetTrace will be using the files in ‘stretch‘ we need
to ensure the permissions are correct (more information can
be found at https://wiki.debian.org/chroot):

sudo chgrp -R $USER stretch/

sudo chown -R $USER stretch/

You are now ready to use DetTrace and the chroot (see
below).

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Navarro Leija et al.

A.5 Experiment workflow

DetTrace is a command line tool which makes it easy to make
computation reproducible. You can simply prepend the com-
mand you are interested in determinizing with ./path/to/dettrace.
For example:

$./bin/dettrace ls -ahl

-rw-r--r-- 1 root ... Jan 1 1970 initramfs.cpio

drwxr-xr-x 1 root ... Jan 1 1970 root

-rw-r--r-- 1 root ... Jan 1 1970 shell.nix

drwxr-xr-x 1 root ... Jan 1 1970 src

...

Note the dates of all files are now deterministic! DetTrace
will determinize the specified program along with any subpro-
cesses that are spawned. Furthermore, DetTrace containerizes
the program to guarantee a reproducible starting filesystem.

Similarly we may create a file and then stat the file with
DetTrace:

$ touch foo.txt

$./bin/dettrace stat foo.txt

File: foo.txt

Size: 0 Blocks: 1 IO Block: 512 ...

Device: 1h/1d Inode: 8 Links: 1

Access: (0644/-rw-r--r--) Uid: ...

Access: 1970-01-01 00:00:00.000000000 +0000

Modify: 1970-01-01 00:00:00.000000000 +0000

Change: 1970-01-01 00:00:00.000000000 +0000

Birth: -

Notice a lot of the file’s metadata is now deterministic!
We didn’t specify a container when calling DetTrace with

these simple commands. Yet, when running commands:

$./bin/dettrace pwd

/build

$./bin/dettrace ls /

bin/ build/ dettrace/ dev/ etc/ lib/ ...

We see the current working directory (CWD) is /build and
listing the root directory looks vastly different from the
host’s root directory. This is because when no container
is specified DetTrace will create a minimal one based on
the root/ directory found at the top level of the DetTrace
repository.

Running:

$ ls root

bin/ build/ dettrace/ dev/ etc/ lib/ ...

We can see this directory holds what looks like a minimal
Linux filesystem. For this reason, DetTrace needs to be able to
find the root/ directory, which DetTrace expects will always
be ../root/ relative to the location of the binary.

While running the command without a chroot is easy, it
does not guarantee reproducibility since the starting filesys-
tem state may be different from run to run. Therefore we
use the chroot flag to specify the chroot image created in the
build step (see above). We can use this chroot as the starting
image for DetTrace:

./bin/dettrace --chroot path/to/stretch/ ls

This command will now run deterministically using the
chroot as the starting image. DetTrace also supports running

inside Docker containers, see the Makefile and Dockerfile to
see how this is done for our own tests.

A chroot or containerized environment is standard and
recommend way to use DetTrace.

A.6 Evaluation and expected result

Any program running under DetTrace is expected to produce
the output of the program with a deterministic version of the
output. So running the date command multiple times will
produce the same result.

$./bin/dettrace date

Sun Aug 8 22:00:00 UTC 1993

$./bin/dettrace date

Sun Aug 8 22:00:00 UTC 1993

DetTrace comes with dozens of sample nondeterministic
programs meant to stress test different sources of nondeter-
minism found in programs. These programs are designed to
be nondeterministic, and have an expected, deterministic,
output when running under DetTrace. You may test your
installation by running make test to run all our sample pro-
grams and integration tests. If docker is installed you may run
make test-docker to run the same tests under a Docker envi-
ronment instead. Docker is the preferred way to run the tests
as it handles hard to reproduce sources of unreproducibility
seen in the wild.

Let’s do a reproducible build! For simplicity we will use
DetTrace itself as the program to build reproducibly. From
the root directory of the DetTrace repository:

./bin/dettrace make -C src/

This will build DetTrace deterministically under DetTrace.
You can use a program like hashdeep to hash the binary
outputs of programs and ensure the results are deterministic
across executions.

A.7 Experiment customization

Dettrace has several command line options which may be
useful:

∙ –debug N : Verbose debug output for DetTrace. Prints
extra information about system calls, instructions, and
OS events that DetTrace is intercepting. Useful for
debugging failures or determinism bugs.

∙ –working-dir : By default DetTrace “bind mounts” the
CWD inside the container, this makes working without
chroots easy and seamless. However, when working
with chroots we probably don’t want the arbitrary
CWD to be moved inside the chroot. Instead we want
to specify a directory inside the chroot. This flag allows
you to specify a CWD inside the chroot.

	Abstract
	1 Introduction
	2 Why is Reproducibility Important?
	3 Reproducible Containers
	4 Reproducibility Requirements for Linux and x86-64
	5 DetTrace Design
	5.1 Process, User and Group IDs
	5.2 OS-Generated Randomness
	5.3 Time and Clocks
	5.4 Signals and Timers
	5.5 Files and Directories
	5.6 Reproducible Scheduler
	5.7 Threads
	5.8 CPU Instructions
	5.9 Unsupported Operations
	5.10 System Call Modification
	5.11 Improving performance with seccomp-bpf

	6 Experimental Methodology
	6.1 Verifying Reproducibility

	7 Evaluation
	7.1 Package Build Reproducibility
	7.2 Package Build Correctness
	7.3 Package Build Portability
	7.4 Package Build Performance
	7.5 Bioinformatics Workflows
	7.6 TensorFlow

	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

