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ABSTRACT

LEVERAGING SYSTEM CALL INTERPOSITION FOR LOW-LEVEL PROCESS

MANIPULATION

Omar S. Navarro Leija

Joseph Devietti

Modern software continues to grow in size and complexity with no signs of slowing down.

Program tracing allows us to observe the execution of a program. OS-level program tracing

is useful, as it allows us to abstract over many details of program execution and view

programs based on the IO operations they perform. Beyond read-only program tracing, this

dissertation overviews low-level process manipulation. We argue process manipulation is a

useful and general technique with many applications.

We show the utility of tracing and process manipulation by covering several projects which

leverage these techniques. First, we describe Dettrace, a deterministic container abstraction.

Dettrace provides a containerized environment where any computation inside the container

is guaranteed to be deterministic. Next, we describe ProcessCache implements a system for

automatically caching results of process-level computations. ProcessCache automatically

infers inputs and outputs to a program and will only re-execute a process if its inputs have

changed. Otherwise, it skips unnecessary recomputation by using the cached results. Finally,

Tivo combines lightweight determinism enforcement with record and replay to suppress

certain types of thread-level nondeterminism.

Finally, our future work proposes ChaOS, a fuzzing system for fault injection at system call

sites. Lastly, we list key features and requirements for next generation program tracing and

low-level process manipulation.

v



TABLE OF CONTENTS

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 : Introduction & Background . . . . . . . . . . . . . . . . . . . . 1

1.1 Program Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Low-level Process Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 System Call Interposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 The ptrace API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 : Reproducible Containers . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Why is Reproducibility Important? . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Reproducible Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Reproducibility Requirements for Linux and x86-64 . . . . . . . . . . . . . . . 12

2.5 DetTrace Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 3 : ProcessCache: Automatic Process-Level Memoization . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Caching/Memoizing Computation . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 ProcessCache Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



3.4 ProcessCache Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CHAPTER 4 : Tivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Lightweight RR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 5 : Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 ChaOS: Fault Injection at System Call Sites . . . . . . . . . . . . . . . . . . . 70

5.2 Better System Call Interposition Mechanisms . . . . . . . . . . . . . . . . . . 74

CHAPTER 6 : Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vii



LIST OF TABLES

TABLE 2.1 (Top) How build status changes moving from the baseline (BL) to
DetTrace (DT), and from DT to BL (bottom). DetTrace automati-
cally renders reproducible 72.65% of packages that are irreproducible
in the baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

TABLE 2.2 Per-package average number of events encountered by DetTrace. . . 33

viii



LIST OF ILLUSTRATIONS

FIGURE 2.1 DetTrace containers abstract away both sources of nondeterminism
(gray arrows) and nonportability (black arrows), making a DetTrace
computation a pure function of its initial file state. . . . . . . . . . 12

FIGURE 2.2 High-level overview of DetTrace’s organization. The unshaded blocks
(processor, kernel and user programs) are completely unmodified. . 15

FIGURE 2.3 State transitions for a user process in the DetTrace scheduler. . . . 20
FIGURE 2.4 To render the read system call reproducible, DetTrace retries read

operations that do not return the requested number of bytes. The
solid arrows indicate what the user process perceives to have oc-
curred. The dashed arrows indicate extra operations DetTrace un-
dertakes to provide the illusion of reproducibility. . . . . . . . . . . 23

FIGURE 2.5 DetTrace overhead (y-axis, log scale) is largely driven by the rate
at which system calls are performed (x-axis). Packages that use
threads (dark blue dots) are typically slower than those that do not
(light orange dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

FIGURE 2.6 Speedup of bioinformatics workflows with 1, 4 & 16 parallel pro-
cesses, normalized to sequential native execution (higher is better).
Dark blue bars are native execution, and light orange bars are Det-
Trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

FIGURE 3.1 The exec-unit provides a useful abstraction over diverse program
fork-exec structures. Processes are represented by darker circles
with the letter P. Threads are represented by lighter circles with
the letter T. (a) In the simplest case, a program contains one exec-
unit with one process. (b) An exec-unit may internally contain
multiple processes and those processes may be multi-threaded. (c)
A program containing multiple exec-unit with their own possibly
complex internal structure. . . . . . . . . . . . . . . . . . . . . . . . 40

FIGURE 3.2 Percentage overhead breakdown of each of the different components
which comprise ProcessCache for each bioinformatics workflows.
The most obvious source of overhead is hashing input files, followed
by copying output files to the cache. . . . . . . . . . . . . . . . . . . 50

FIGURE 3.3 Slowdown (normalized to baseline execution) for each bioinformat-
ics workflow. The blue bars indicate the slowdown over baseline of
running under ProcessCache with the mtime checking mechanism
and copying outputs files to the cache asynchronously (one back-
ground thread). The red bars indicate the slowdown over baseline
of running under ProcessCache with the mtime checking mecha-
nism and copying output files to the cache synchronously. The
yellow bars indicate the slowdown overbaseline of running under
ProcessCache with hashing input files as the checking mechanism
and copying output files to the cache synchronously. Lower is better. 51

ix



FIGURE 4.1 Results of comparing baseline with lightweight RR. Tests where rr
is higher than the baseline represent cases where lightweight RR
improved intermittent test’s expected times. Missing orange bars
represent a timeout during replay. . . . . . . . . . . . . . . . . . . 64

FIGURE 4.2 Performance of lightweight RR over baseline. Missing entries rep-
resent tests where rr-channels failed to run before timeout. . . . . . 65

FIGURE 5.1 libptrace TraceEvent enumeration. libptrace abstracts over the un-
derlying ptrace IO events. . . . . . . . . . . . . . . . . . . . . . . . . 84

FIGURE 5.2 libptrace allows us to write code in a sequential style. The tracer
object is a handle to various high-level tracing methods. The Execu-
tion object holds the context of the current process being executed.
The .await call may yield the execution of this function until the
posthook event arrives. Arbitrarily many IO events may arrive and
be handled by the libptrace runtime for other processes or threads
in the meantime. When the specific post-hook we are waiting for
arrives, the runtime will schedule our async function and continue
executing the code from where we left off. . . . . . . . . . . . . . . . 84

x



CHAPTER 1

Introduction & Background

1.1. Program Tracing

Program size and complexity continues to grow with no signs of stopping. Developer tools

allow programmers to reason about and understand the behavior of their programs. With

program size and complexity growing, program abstractions are essential: abstractions allow

programmers to reason about the relevant parts of the program without having to consider

all details at all levels of the software stack. One useful way of viewing a program is based

on relevant operations a program may execute during its lifetime. For example, we may

only be interested in seeing which files a program accesses. This information is not easily

available from the source code or program tests.

Program tracing is a useful way of getting this information. Tracing is a technique that

allows us to observe the execution of a program. Furthermore, we can opt to only trace a

subset of all operations, those relevant to our current task. Tracing allows us to focus on the

high-level operations we are interested in, without having to consider the low-level details

of program execution. While program tracing may be useful at at any level of the software

stack, this dissertation focuses on OS-level tracing. We do not focus on other useful tracing

methods, such as dynamic instrumentation tools [40, 73]. OS-level tracing offers several

unique advantages: it allows us to treat programs as black-boxes, only focusing on the IO

operations a program executes. This abstracts over many details of program execution: the

programming language, compiler, libraries, runtime environment, etc. Furthermore, OS-

level tracing does not require any source code availability or modification, allowing us to

trace arbitrary executables.

Program tracing can be thought of as a type of dynamic program analysis. One example of

such a tool is strace. strace is a Linux utility that traces and reports the system call and

signals executed by a program. strace allows us to quickly specify system call events we are
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intersted in. Some examples of operations that programmers may be interested in tracing

include:

• File system accesses: Files created, read, or modified by a program. We can also

track individual writes or reads to files and view the bytes written or read.

• Networking: We can view networking done by programs using the standard POSIX

socket API.

• Thread/Process Creation and Exit: Threads or processes spawned and exit

events.

• System Calls: System calls executed by a program to gain insight to its execution.

• Signals: Signals received by a program.

1.2. Low-level Process Manipulation

Program tracing can be thought of as a read-only operation. Tracing observes the behavior

of a program but does not modify or affect (functionally) the execution. The same methods

used for program tracing can be used to dynamically modify the state of a program. Beyond

tracing, this dissertation focuses on low-level program manipulation. We argue program ma-

nipulation is a useful as a general technique with many applications to software systems.

This dissertation presents various research projects, based on program manipulation meth-

ods, to build useful systems in various areas of systems. We focus on the main method for

tracing and manipulating processes in Linux: ptrace. The future work section (4.8) gives

an overview of other tracing and process manipulation techniques. This type of process

manipulation works at a low level of the software stack, between the program executing in

userspace but above the kernel. Manipulating a process’ execution requires familiarity with

many low-level OS concepts such as program registers, the system call ABI, signal delivery,

etc. Therefore we use the term low-level process manipulation to refer to this type technique.

1.3. System Call Interposition

"The system call is the fundamental interface between an application and the Linux kernel"

[28]. In Linux, executing nearly all IO operations requires a direct system call. Recent
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advancements in kernel-bypass IO are a notable exception to this, as they allow data path

IO operations to execute without calling into kernel space; however, their control plane

operations still require calls into the kernel. Therefore, a natural way of implementing

OS-level tracing utilities is via system call interposition/interception (we use both terms

interchangeably in this dissertation). System call interposition allows us to introspect all

(or some subset) of system calls made by a program. System call interposition is the main

way we implement process-level manipulation techniques.

1.3.1. Use Cases

Program tracing is a powerful building block leveraged by various previous works. For ex-

ample: to guarantee deterministic execution of batch processing [94], to precisely determine

build dependencies [95], to find process-level races [67], and to build userspace record-and-

replay systems [84]. System call interposition can emulate system call executions. For

example, by intercepting Windows API calls, systems like Wine [22] and Proton [13] al-

low native Windows applications to run unmodified in a POSIX environment. Combining

system call tracing, emulation, and modification allows us to build useful low-level systems.

By intercepting, emulating, and modifying non-deterministic system calls, Dettrace [82] pro-

vides a deterministic container abstraction where any binary executed inside the container is

guaranteed to be deterministic. ProcessCache (3) allows for automatic caching and skipping

of redundant process execution, when none of the inputs to the computation have changed.

1.3.2. Security Implications

Program tracing and low-level process manipulation provide many benefits and use cases,

as outlined above. There are also security implications and open questions raised by these

methods. All popular tracing methods allow the tracer to read arbitrary program memory.

While this may superficially seem like a security concern, Linux uses per-user capabilities

to determine permissions for program tracing. So tracing does not allow for "more" access

to processes than the user already had.

Tracing can be thought of as a "read only" operation which merely observes the state and IO
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of a program. Contrast this to low-level process manipulation. Which allows us to change

the way a program executes. This comes with security implications, as incorrectly manipu-

lating a process could lead to security vulnerabilities in an otherwise correct program. Our

process-level manipulation works at the OS-level, so we may circumvent language runtimes

or compilers, which may have provided execution guarantees and invariants to the program.

Future work in this area should address this question by considering how we can provide low-

level process manipulation operations in a safe manner while allowing programs to execute

correctly.

1.4. The ptrace API

Ptrace is a Linux mechanism for tracing the execution of another program. Ptrace is powerful

enough to implement debuggers like GDB and system call tracing utilities like strace. Ptrace

allows one process, the tracer, to trace the execution of possibly many processes or threads,

the tracees. A tracee executes until some event specified by the tracer occurs. On such an

event the tracee is stopped and the tracer receives an event message from the OS. Possible

events include: system call execution, instruction execution, process spawn, process calls

execve, signal arrival, process exit, and more.

While the tracee is stopped, the tracer can read and write to arbitrary memory and registers

of the tracee. There are two system call interception events:

• Pre-hook events: The program is stopped before the system call is executed.

• Post-hook events: The program is stopped right after the system call is complete but

before it returns control to the program.

We can combine ptrace interception events plus arbitrary reads and writes to memory and

registers to create powerful process manipulation mechanisms. With some work, ptrace can

be used to inject arbitrary system calls into a process, change a system call’s arguments

before it is called, skip or emulate system calls on behalf of the tracee, and more.
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1.4.1. Improving Interception Performance with seccomp-bpf

By default ptrace stops the tracee for every system call twice (pre-hook event and post-hook)

, but Linux’s seccomp-bpf mechanism allows for selective system call interception, avoiding

interception overhead on system calls we are not interested in. Futhermore seccomp also

allows the interception code to dynamically decide whether to await a system call’s post-hook

event, or simply skip until the next system call. This allows us, in certain scenarios, to skip

the post-hook event altogether, further reducing overhead. Linux kernel versions >= 4.8

additionally optimize context switches by delivering a single event instead of separate pre-

system-call and seccomp events. Older Linux kernel versions (< 4.8) can still be supported

in a backwards compatible manner by falling back to the slower implementation.

1.4.2. Building More Complicated Operations with ptrace

The ptrace primitive operations can be used as building blocks to build more interesting,

useful process manipulation mechanisms. In this section we show how to implement various

general process manipulation mechanisms.

System call modification. During a pre-hook system call event, we may write to the reg-

isters and memory of a tracee. Therefore we can observe the current system call about to exe-

cute using PTRACE_GETREGS and then write to the registers (via PTRACE_SETREGS)

to change any argument to the system call. We may further change the system call itself

by writing the corresponding system call number to the RAX register. Arguments to this

system call may be specified via the other registers based on the Linux ABI.

System call replaying. We have access to a process’ instruction pointer via the RIP

register. This allows us to "rewind" execution of a process by setting the value of RIP. All

instructions on x86-64 capable of calling a system call are two bytes long. So setting the

RIP register to RIP − 2 allows us to replay a system call an arbitrary number of times at

system call sites. Arbitrary arguments and memory may be modified between repeated calls

to this system call for a flexible and powerful system call replaying mechanism.
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System call injection. System call replaying can be viewed as a special case of system

call injection. It is easiest to inject arbitrary system calls during a system call interception

event. All we have to do is change the registers to specify system calls on the tracee. A

more intricate approach allows us to inject system calls at arbitrary points in the program

execution. For example, we may rewrite the current code pointed by RIP with a system call

instruction. This process in nontrivial and there are various edge cases to consider [40] 1.

1An alternate approach would record the instruction pointer address of first use of a system call instruc-
tion, then to inject a system call at arbitrary points, we could save the current value of RIP and overwrite
it with our recorded system call instruction address. This would allow arbitrary system call injection during
any ptrace event without requiring rewriting of code. While simpler to implement, our performance overhead
would worsen when executing instruction jumps from distant regions of code.
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CHAPTER 2

Reproducible Containers

2.1. Introduction

In data-processing contexts, it is often important to repeatably map each input to a unique,

deterministic output. Determinism is useful in software builds [2, 15], reproducible data

analytics [4, 9], and fault-tolerant distributed systems [38, 56, 58, 93]. Yet in spite of

previous work on deterministic languages [35, 75, 94] and operating systems [31, 34, 61], it

is challenging to enforce deterministic output in practice. Thus we seek a practical container

abstraction to isolate running software and execute it against clearly delimited input data,

achieving end-to-end reproducible handling of data. For deployability, it is furthermore

essential to provide this guarantee on commodity hardware and software.

Prior work on deterministic operating systems is neither necessary nor sufficient to meet our

definition of repeatable data processing, as additional encapsulation is needed to ensure the

program starts in the same state, without differences in system time or identifiers such as

pids. For example, Determinator [31] does not provide a repeatable notion of deterministic

time. dOS [34] provides a deterministic process group abstraction and can record-and-replay

timing-related system calls. But dOS also uses record-and-replay for filesystem interactions,

leaving the filesystem outside of the “deterministic box”. Thus dOS cannot determinize a

data-processing job that necessarily includes file I/O.

Ultimately, determinism is also a weaker property than what we desire – determinism guar-

antees the same result for repeated runs on a given machine, but in this work we seek

identical results across machines (subsection 2.7.3), a property we term reproducibility. In

this paper, we describe the DetTrace system that makes strides towards a reproducible con-

tainer abstraction for x86-64 Linux programs. All code running within the container is

forced to run reproducibly, without needing any source code changes. DetTrace encapsu-

lates a Linux process tree and the IO it performs, and runs on commodity hardware and
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stock Linux distributions. The DetTrace runtime uses a combination of Linux namespaces,

bind mounts, and ptrace facilities to intercept system calls and x86 instructions with ir-

reproducible semantics. While DetTrace supports process-level parallelism, threads within

a process are currently serialized. While many prior deterministic execution systems sup-

port thread-level parallelism, we focus on providing a robust container implementation for

complex multi-process workloads.

DetTrace exports the same POSIX API that the process tree inside the container would

otherwise see—in each case we simply select one valid behavior out of many to ensure repro-

ducibility. For example, DetTrace provides a reproducible notion of time so the timestamps

added to archives by the stock tar utility (ultimately stemming from a system call like time)

are accordingly reproducible. By enforcing reproducibility at the system call and ISA level,

we can transparently export reproducibility to all higher levels such as language VMs.

This paper makes the following contributions:

• We present the design of DetTrace, the first reproducible container abstraction which

runs in user-space and supports unmodified programs.

• We give the first taxonomy of the sources of irreproducibility within Linux system

calls and x86-64 instructions. For sources we don’t handle, we describe the challenges

involved in doing so.

• We use DetTrace to run bioinformatics workflows, train TensorFlow models, and build

12,130 Debian packages reproducibly, including large packages like llvm, clang and

blender. Much of this software runs irreproducibly by default, but DetTrace is able to

render it reproducible.

• We show that DetTrace’s performance overhead is correlated with the frequency of

system calls in a given workload: e.g., compute-intensive process-parallel bioinformat-

ics workflows can see overheads under 2%, while system-call-intensive software builds

see overheads of 3.49× on average.
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2.2. Why is Reproducibility Important?

Reproducibility confers many advantages for software development. Reproducibility is cru-

cial during debugging; bugs that can’t be reproduced are much harder to fix. In distributed

systems, reproducibility ensures that all replicas behave the same way, accelerating consen-

sus [29] and enabling transparent fault recovery [56]. Reproducibility also has more specific

benefits in a range of software domains, which we explore next.

Reproducible Builds Bitwise-reproducible builds confer many advantages. Builds can

run faster thanks to more hits in caches of build artifacts, and builds can be confidently

distributed knowing that the same artifact will be produced on any node of a cluster. Re-

producible builds also increase software integrity, boosting confidence that a given binary

originated from a particular source code release. For these reasons, many Linux distribu-

tions, catalyzed by the Debian Reproducible Builds (DRB) [15] effort, target bitwise repro-

ducibility of all their packages. Microsoft is pursuing reproducible software builds [88] with

support in its C# and VB compilers [62]. Google’s Blaze/Bazel build system [2] encourages

a reproducible build ecosystem, to prevent spurious changes due to irreproducibility causing

massive additional downstream rebuilds in Google’s unified internal software repository.

To achieve reproducibility, every piece of the software build toolchain needs to be repro-

ducible: preprocessors, compilers, scripts used in the build process, and so on. For example,

to deal with timestamps that tar records for each file in the tarball, tar was extended with

the --clamp-mtime flag [24] to force these timestamps to a fixed value. The modified tar

program then needs to be packaged and distributed, and build scripts updated to use the

new flag, before reproducibility is achieved.

Whacking one irreproducible mole at a time is predictably laborious. At present, after more

than 5 years of effort by dozens of DRB contributors, 5.2% of current Debian packages

(1,289 in all) remain irreproducible. While tools exist to identify sources of irreproducibility

[89], fixing a build is still a manual process. Even should DRB reach 100% reproducibility,

vigilance would be required to ensure that errant code changes did not reintroduce irrepro-
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ducibility.

Computational Science It is perhaps ironic that, while reproducing results is a cor-

nerstone of the scientific method, many computational science tools are not reproducible.

While chemical reactions and living organisms are intrinsically variable, there is no good

reason for computation to behave similarly. Reproducibility in computational science would

accelerate scientific advancement as scientists could more easily share, reproduce, and build

upon one another’s work. Improving the reproducibility of scientific results is a key focus for

funding agencies [81] and can be seen in our community in the growing artifact evaluation

movement. We find a common bioinformatics tool to be irreproducible (subsection 2.6.1).

Machine Learning There is growing interest in reproducible machine learning (ML) [91].

Reproducibility enables auditing of models to see why they made certain decisions. It also

makes it easier to see whether performance changes are attributable to, e.g., conscious design

changes or incidental randomness like sampling of the training set. We apply DetTrace to

the popular TensorFlow framework, which is well-known to be irreproducible [46, 63].

2.3. Reproducible Containers

In this work we aim to provide a reproducible container abstraction. The container itself

is specified as an initial filesystem state and a program (from the filesystem) to run. This

program may in turn launch other programs, e.g., if it is a shell. The programs running in the

container may attempt to execute arbitrary x86 instructions and Linux system calls, though

we do not guarantee that all such attempts succeed. In our initial prototype, containerized

code can interact only with its filesystem and other programs running concurrently in the

container. However, in the future we envision limited forms of external interaction being

permitted if they preserve reproducibility, e.g., downloading files with known checksums.

Our reproducibility goal can be decomposed into two sub-properties: determinism and porta-

bility. For us, determinism is dataflow determinism [72], which means that, on a given ma-

chine, each read returns the same value on every run. This hides sources of irreproducibility

like time and explicit randomness. Determinism implies many useful properties: the filesys-
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tem state after all processes have finished will be identical, as will the messages printed to

standard output and standard error. Strictly speaking, due to the possibility of external

errors that cannot be determinized, e.g., running out of disk space, our guarantee is one of

quasi-determinism [66]: any two runs are either dataflow deterministic, or at least one run

crashes due to an external failure.

Portability means that dataflow determinism extends across machines as well, with varied

microarchitectures or OS versions. Our container hides these details by always reporting a

simple x86-64 uniprocessor and Linux 4.0 kernel. To be practical, our container can only

abstract away from a limited number of hardware or OS details: we do not emulate an

x86-64 chip when running on an ARM microcontroller. DetTrace also requires certain hard-

ware and OS support to provide this abstraction, in particular at least an Intel Ivy Bridge

processor and Linux 4.12. DetTrace can run on older processors and Linux versions, though

with fewer portability guarantees (subsection 2.5.8) or lower performance (subsection 1.4.1).

DetTrace also offers a measure of forward compatibility. While a future Linux version might

introduce new irreproducible APIs that DetTrace would grow to support, today’s software

using existing Linux APIs cannot access these, and so if software works with DetTrace today

it will remain reproducible going forward.

Ultimately, a DetTrace container runs as a pure function of the container configuration

and initial filesystem state. File contents affect the computation, but file metadata is only

partially visible. Two runs where only the mtime of a file varies will produce the same

output, but a permissions change can affect output. Figure 2.1 illustrates what constitutes

an input, i.e., what can induce output changes in a DetTrace computation.

Existing container technologies (like Docker) do not provide reproducibility: they are neither

deterministic nor portable, as many details of the host OS and processor microarchitecture

are directly visible inside the container. Virtual machines offer stronger hardware abstrac-

tion but lack determinism and are also quite heavyweight. We believe that the DetTrace

reproducible container abstraction delivers significant advantages over existing approaches
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Figure 2.1: DetTrace containers abstract away both sources of nondeterminism (gray arrows)
and nonportability (black arrows), making a DetTrace computation a pure function of its
initial file state.

for domains like building and testing software where reproducibility is critical.

2.4. Reproducibility Requirements for Linux and x86-64

Code running inside our user-space reproducible container has access to two major interfaces:

the x86-64 instruction set and the Linux system call API. Because we place no restrictions

on code in the container, it can contain arbitrary instructions and attempt arbitrary system

calls. Inspired by the Popek and Goldberg virtualization requirements [87] which define the

requirements to provide a virtual machine abstraction, we define the set of requirements for

reproducibility. We analyze each documented x86-64 ISA instruction2 and system call to see
2There are some undocumented x86-64 instructions [43]. Handling these would be an interesting avenue

for future work.
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if it can be a source of irreproducibility, and under which conditions if so. Of particular im-

portance is identifying critical members of an interface—those which permit irreproducibility

but which cannot be reliably detected during execution. Any critical instruction or system

call could silently introduce irreproducibility.

Our use of ptrace means that we see all system calls made from the container, so there

is no potential for a critical system call (we also handle vDSO calls, see subsection 2.5.3).

If a given system call is a source of irreproducibility, there are many potential mitigations:

wrapping the syscall or replacing it entirely with a deterministic counterpart (like time calls),

converting it into a nop (like sleep calls), or not supporting it and throwing a (reproducible)

container-level error.

There are many sources of irreproducibility within the latest x86-64 instruction set [7].

Privileged instructions are often irreproducible but will raise an exception in our user-level

container. Some irreproducible user-level x86-64 instructions are difficult, though possible,

to trap. rdrand and rdseed return random bits from a hardware entropy source, and can be

trapped at the hypervisor level via the VT-x extensions, but not from ring 0. Instructions

like rdpmc (read from performance counter) are sometimes accessible from user-space but

can be configured to cause traps via appropriate kernel settings.

Some floating-point instructions like cvtsd2si (which converts a double to an integer) are

documented as having “unpredictable behavior across different processor generations” with

certain instruction encodings. We have not investigated the extent of this behavior, but, by

compromising portability, it is a potentially critical source of irreproducibility.

TSX Irreproducibility Ultimately, we found just one family of definitively critical in-

structions: the TSX instructions used for transactional memory and lock elision (also noted

by [85]). A transaction can abort for a variety of reasons, some of which—like the arrival

of a timing interrupt—are highly irreproducible. A program can monitor its own aborts via

the abort handler registered with the xbegin instruction, and perform irreproducible com-

putation as a result. While the presence of TSX can be hidden by crafting the return value
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of cpuid, an invalid or adversarial program can ignore cpuid and run these instructions any-

way. We are not aware of any ability to trap on the execution of TSX instructions, though

Intel’s microcode updates that disabled prior buggy versions of TSX [25] show that software

configurability does exist on some level. Hardware support for trapping critical instructions

is necessary for efficient and complete detection, because the hardware knows definitively

what instructions a program is executing. Detecting the presence of xbegin in an adversarial

program is impractical: the program may jump into the middle of an otherwise-valid in-

struction or employ self-modifying code to obfuscate its behavior beyond the reach of static

binary analysis. Dynamic analysis or emulation can in principle catch such behavior, but

only at a prohibitive runtime cost.

Because current hardware does not allow our DetTrace prototype to trap all irreproducible

instructions, we rely on programs being well-behaved enough not to execute illegal or missing

instructions (i.e., respecting the output of cpuid). Nevertheless, our characterization of Linux

system calls and x86-64 instructions is a useful yardstick for work towards 100% reproducible

containers that are robust against even adversarial programs.

2.5. DetTrace Design

DetTrace combines a lightweight sandboxing container with system call interception to

achieve reproducibility enforcement for arbitrary Linux programs. DetTrace achieves this

function while meeting our design goals: a pure-software user-space solution, supporting

unmodified binaries, requiring no privileged (root) access, and requiring no record and re-

play. DetTrace uses standard Linux container features: user, PID, and mount namespaces,

bind mounts and chroot. These mechanisms help to insulate programs in the container from

programs and files outside it.

DetTrace uses ptrace to intercept all system calls made by code running in the container.

The Linux ptrace mechanism allows one process (the tracer) to monitor the execution of

another process (the tracee). The tracer can intercept the tracee’s system calls (both before

they reach the kernel and before they return to the tracee), signals, and more. The tracer
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Figure 2.2: High-level overview of DetTrace’s organization. The unshaded blocks (processor,
kernel and user programs) are completely unmodified.

can also read and write tracee memory and registers. Since the tracer is its own process,

it is well-isolated from tracee faults (and vice-versa). However, extra context switches are

required on intercepted events to jump to the tracer each time. In DetTrace, system calls

with reproducible semantics are permitted through, while those with irreproducible effects

are either wrapped reproducibly or are identified as unsupported, triggering a runtime error.

Next we detail sources of irreproducibility and describe how DetTrace renders each one

reproducible. For simplicity, we use the term “user process” to refer to a process running

inside a DetTrace container.

2.5.1. Process, User and Group IDs

Thanks to our process namespace, processes inside our container receive unique PIDs that

are independent of the world outside the container. A user process cannot name any process
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outside the container. As user processes are created and terminated deterministically, and

Linux allocates PIDs in each namespace sequentially, PIDs inside the container are naturally

deterministic. We similarly leverage uid and gid namespaces to similar ends. The first user

process starts with root privileges, and can change identity via setuid.

2.5.2. OS-Generated Randomness

A Linux user process can request randomness from the OS via the getrandom system call,

or by reading from the special /dev/random or /dev/urandom files. DetTrace intercepts

getrandom system calls and fills the specified user buffer with values generated from a sim-

ple LFSR pseudorandom number generator. Similarly, /dev/random and /dev/urandom are

named pipes to which DetTrace writes values from our PRNG. The PRNG seed can be spec-

ified when invoking DetTrace, to introduce randomness in a controlled way. User processes

can also obtain randomness via the x86-64 instructions rdrand and rdseed, discussed later in

subsection 2.5.8.

Some applications require true randomness for security reasons. DetTrace can provide such

applications with direct access to, e.g.,, the real /dev/urandom and optionally log the values

read to preserve reproducibility.

2.5.3. Time and Clocks

A variety of system calls return some form of timing information. For system calls that

report wall clock time directly (like gettimeofday) DetTrace reports instead reproducible

logical time values. For logical time, DetTrace uses a count of the number of time calls

performed by a user process. This ensures that time monotonically advances between calls,

which is important for some user programs which check timing behavior.

To enable high-resolution timing, Linux uses the virtual Dynamic Shared Object (vDSO)

mechanism to implement timing system calls like gettimeofday. For performance reasons,

these system calls are implemented as library calls and are thus not intercepted by ptrace.

While Linux’s LD_PRELOAD mechanism is a natural choice for intercepting library calls, it
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is incomplete in small but important ways. First, it doesn’t support statically-linked binaries.

Second, a process can find the vDSO library within its address space (via getauxval) and

directly call a vDSO function; indeed, libc does just this in its mkstemp function. To ensure

airtight interception of vDSO calls, DetTrace instead, just after each execve system call,

replaces the vDSO library code with our implementation where each vDSO function makes

a direct system call—which is duly intercepted via ptrace. We furthermore make the vvar

page unreadable to prohibit any access to the raw nondeterministic data that vDSO timing

calls use. While replacing vDSO calls with normal system calls incurs a performance penalty,

we plan to extend our vDSO library to handle the timing calls directly in a future version

of DetTrace.

The x86 rdtsc instruction returns timing information in the form of the current cycle count.

Fortunately, rdtsc can be trapped and emulated reproducibly, see subsection 2.5.8. Filesys-

tem timestamps are a final source of timing information which we discuss in subsection 2.5.5.

With nondeterministic parallelism, racing threads can recreate high-resolution clocks, but

our deterministic scheduling renders this moot [30].

2.5.4. Signals and Timers

Signals are a prime source of irreproducibility as their arrival is typically asynchronous. In

principle, signal generation and delivery can be made fully reproducible via a reproducible

logical clock, as with deterministic shared memory synchronization [86]. However, we have

not found this necessary for our current workloads. Instead, DetTrace provides reproducibil-

ity for a subset of Linux signals. First, DetTrace does not support sending signals between

user processes. It is important, however, that a user process can send itself signals. Some

such signals are naturally reproducible: SIGSEGV, SIGILL and SIGABRT act like “precise

exceptions” that halt program execution at a well-defined, reproducible state.

Timers, requested via system calls like alarm, are another common source of self-signals. To

render timer expiration reproducible, timers in DetTrace expire “instantaneously,” invoking

a signal handler if appropriate. We convert signal-generating timer calls (like alarm) into a
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pause system call that blocks the user process. Then, the tracer sends the necessary signal to

the user process, invoking a registered signal handler if appropriate. This causes the pause

call to return, and the user process resumes execution. The timer call never reaches the OS,

but is instead emulated by the tracer.

2.5.5. Files and Directories

Files and directories are a rich source of irreproducibility, due to a complex API and extensive

metadata. Our first step in providing a reproducible abstraction for files and directories is

to isolate the view of the host filesystem that a user process has, accomplished via the chroot

system call. DetTrace can also be nested inside standard containers like Docker to provide

stronger filesystem isolation from the host.

File and directory ownership and permissions are inputs to a DetTrace computation

(Figure 2.1). The Linux namespace controls the mapping from uid/gid inside the namespace

to uid/gid on the host machine; this mapping is also part of the input to DetTrace. By

default, we map the current user account to root inside the container, and all others to

nobody/nogroup.

The order in which directory entries are returned is under the control of the filesystem

implementation. To make the getdents system call reproducible, DetTrace sorts directory

entries by name before returning them to the user process.

The read and write system calls have irreproducible semantics, as they may read/write

arbitrarily fewer bytes than requested. While in practice we have never seen such “par-

tial” operations on regular files, they do regularly arise when accessing pipes. To render

these system calls reproducible in all cases, DetTrace automatically retries partial reads and

writes until they process the requested number of bytes, or a read returns EOF. This is

accomplished by decrementing the user process program counter to rerun the system call

instruction, and adjusting the arguments to, e.g.,, tell the current read to continue where

the previous read ended.
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Inodes are unique identifiers for a file or directory within a filesystem mount. The stat

family of system calls report inodes to a user process, and simply reporting a fixed value is

insufficient as many user processes compare inode values to quickly identify identical files.

Instead, DetTrace maintains a mapping from real (irreproducible) inodes to reproducible

virtual inodes. Special care is needed to identify when a new file f is created, as the OS

may recycle a real inode for f but DetTrace must allocate a new virtual inode to preserve

reproducibility (see file timestamp discussion, next).

File timestamps present a notion of time to user processes which, unfiltered, could be

used to reconstruct an irreproducible clock. Thus, DetTrace virtualizes file timestamps. On

Linux, each file or directory has three associated times: time of last content modification

(mtime), time of last access (atime) and time of last content or metadata modification

(ctime). In DetTrace, we always report atime and ctime as 0. However, we found that

always returning a fixed value for mtime falls afoul of sanity checks in many programs. For

example, configure from GNU Autotools checks for clock skew by creating a new file, then

comparing its mtime to that of an existing file, raising an error if the mtimes don’t make

sense.

DetTrace implements a mapping between real inodes and virtual mtime, allowing for a

reproducible, but sensible, response from system calls like stat that report mtime. Whenever

a user process opens a file, before the open call reaches the kernel we check whether a file

exists at the specified path. Before the open call returns to the process in the container, we

identify the underlying real inode by examining the /proc filesystem to obtain the path and

real inode of the newly-created file descriptor. By examining the path both before the open

call reaches the OS and afterwards, we can reliably identify when new files are created. If

the file was newly created, we assign its mtime as the current virtual mtime, and increment

the current virtual mtime. Otherwise, the file existed in the initial container image and we

assign it a virtual mtime of 0. Writes to a file do not currently update its virtual mtime

because we have not found this necessary in our workloads, however this could easily be
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Figure 2.3: State transitions for a user process in the DetTrace scheduler.

added to provide more realistic-looking virtual mtimes.

For stat calls, we consult our real inode→virtual mtime map to report mtime appropriately.

Any inode without an entry in the table gets a virtual mtime of 0, as it must have existed as

part of the initial container image. Our lazy population of inode maps assigns reproducible

virtual inodes and mtimes to every file in the container, while avoiding the need to index

the entire container image at launch.

2.5.6. Reproducible Scheduler

DetTrace supports multiple concurrent processes by sequentializing system call execution,

and allowing processes to run in parallel for other operations. Our tracer makes scheduling

decisions at system calls, process spawn, and process exit.

DetTrace implements a reproducible scheduler, which consists of three queues. The Parallel

queue contains the processes currently running in parallel, and the other queues contain

the processes that currently need to be scheduled for sequential system call execution. As

Figure 2.3 shows, processes begin their lives at the back of the Parallel queue. The process

at the front of the Parallel queue moves to the back of the Runnable queue when it needs

to do a system call. The process at the head of the Runnable queue is allowed to perform
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a system call next, if this system call will not block then the process returns to Parallel, if

it will block then the process moves to the end of Blocked queue and will be revisited later.

The process at the front of the Blocked queue is then consulted to see if its system call will

still block, and it moves to Parallel or back to Blocked accordingly.

Blocking System Calls

System calls that may block exhibit a potential for deadlock with DetTrace’s sequential

system call execution. DetTrace avoids deadlock by identifying in advance (and, of course,

reproducibly) whether a system call may block. On any given potentially-blocking system

call s from a process p, s can either succeed immediately, or p must wait until some event in

another process enables s to complete. If the former, we execute s, move p to the Parallel

set, remove it from the queue it was on, and resume p in parallel. If the latter, we preempt

p by moving it to the Blocked queue.

To detect whether a system call will block or not, we transform blocking calls into non-

blocking ones, e.g., a wait4 call is modified to use the WNOHANG flag. When the non-

blocking system call returns and indicates the resource is not available, we preempt the

process and move it to the end of the Blocked queue. We reset the process state to retry

the system call in the future.

Some system calls, like a write to a pipe, may unblock one or more other processes. We do not

track such dependencies between processes; when process p writes to a pipe we do not know

precisely which Blocked processes (if any) this will unblock. But, because the scheduler

iterates fairly over Runnable, Blocked and Parallel processes, any unblocked process will

eventually run.

2.5.7. Threads

The ptrace API for threads and processes are identical, allowing DetTrace to support threads

with few extensions to the scheduler. Threads within a process are sequentialized to render

shared memory interactions reproducible.
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The futex system call is Linux’s implementation of fast, userspace locks. We treat futex

wait calls like any other blocking system call (Figure 2.5.6). If threads busy-wait instead

of blocking, our sequential scheduler fails to make progress, which is one reason a program

may be incompatible with DetTrace (subsection 2.5.9).

2.5.8. CPU Instructions

While irreproducible CPU instructions cannot be intercepted through ptrace, recent x86

hardware provides mechanisms for intercepting many irreproducible instructions (section 2.4).

Our current DetTrace implementation intercepts the rdtsc and rdtscp instructions, which re-

turn a count of current cycles, via the prctl system call. For rdtsc[p], we overwrite their

nondeterministic result with a linear function of rdtsc[p] instructions executed so far.

Additional irreproducible instructions include TSX instructions, rdrand, rdseed, and cpuid.

Serendipitously, the latter provides a solution to the former: we use cpuid interception to

report the absence of TSX and hardware randomness support, as described in section 2.4

(while adversarial programs can try running them anyway, supporting such programs is not

our target). While hypervisors have long been able to intercept cpuid, Intel’s Ivy Bridge

microarchitecture introduces a ring 0 mechanism that the Linux kernel (starting with 4.12)

exports to user-space.

With an Ivy Bridge or newer machine, we can achieve forward-portability when rerunning a

job: pinning the reported system information, while supporting subsequent processors. We

also simplify the hardware details presented to the user process, for example listing a single

core and canonical cache size. This further increases the equivalence class of machines which

must observe the same answer for a job.

Older Intel architectures, such as Sandy Bridge, lack user-space cpuid interception, but

they also lack rdrand and TSX. Therefore DetTrace can still run reproducibly on these

older machines, but the portability guarantee ranges over a much smaller class of machines

because we cannot hide cpuid information.
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Figure 2.4: To render the read system call reproducible, DetTrace retries read operations
that do not return the requested number of bytes. The solid arrows indicate what the user
process perceives to have occurred. The dashed arrows indicate extra operations DetTrace
undertakes to provide the illusion of reproducibility.

2.5.9. Unsupported Operations

Here we describe some limitations of our current DetTrace prototype. If a user process

attempts to use one of these features, DetTrace raises an error. subsection 2.7.1 evaluates

in more detail the number of Debian packages that fail to build due to these reasons.

DetTrace does not support busy-waiting threads because our scheduler performs context

switches for threads only at thread creation/exit and system calls. Sockets are also not

supported, as arbitrary socket use for network communication is a significant reproducibility

challenge. We plan to investigate limited forms of socket communication, e.g., as interprocess

communication within our container, that can be rendered reproducible.

2.5.10. System Call Modification

DetTrace uses ptrace to intercept but then skip certain system calls, e.g., timer calls that

DetTrace emulates internally (subsection 2.5.4). While one cannot directly skip a system

call with ptrace, one can indirectly skip it by replacing the system call number before it

is examined by the kernel. We use time as a convenient “NOP” system call that takes no
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arguments and always succeeds.

We can leverage system call interception to arbitrarily modify, replay or inject new system

calls. As a more involved example, Figure 2.4 illustrates the system call injection we perform

when a user process performs a read system call that requests 8 bytes though the kernel

initially returns only 7. DetTrace adjusts the read arguments to fill in the user buffer with

the remaining bytes and resets the PC to perform another read. Once the user buffer is full

(or we reach EOF), the user process is allowed to continue past the read call, with the buffer

seemingly filled on the first try.

Sometimes a system call requires that we allocate memory in the tracee address space. For

example, the utime system call sets the atime and mtime for a file at a given path. If the

times are specified as null, then the kernel sets the atime/mtime to the current time. To

avoid the kernel setting irreproducible timestamps, DetTrace needs to allocate a timestamp

struct in the tracee address space, initialized with reproducible timestamps, and call utime

with this struct as an argument. To this end, DetTrace allocates a page of memory in

each tracee’s address space after each execve system call. Our custom timestamp struct is

allocated from this page, to avoid perturbing the tracee’s heap or stack.

2.6. Experimental Methodology

We ran our package build evaluation using Debian 7 (Wheezy) packages, a stable version

first released in May 2013 which contains 17,145 packages total. We chose this version of

Debian to avoid confounding effects from the efforts of the Debian Reproducible Builds

project, which began in late 2013. We wanted to capture an accurate pre-DRB picture of

the Debian package ecosystem.

We build our packages on CloudLab c220g5 nodes, where each node has two Intel Xeon Silver

4114 Skylake processors, each with 10 cores (20 threads) running at 2.2GHz, and 192GB of

RAM. These processors support interception of the cpuid instruction (subsection 2.5.8). We

use the full seccomp-bpf optimizations. Each node runs Ubuntu 18.04 LTS with the Linux
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4.15 kernel.

For our bioinformatics workflows, we used RAxML 8.2.10 with AVX support [98], Clustal

2.1 in -ALIGN mode [42] and HMMER 3.1b2 [54]. We used TensorFlow v1.14 in our ML

experiments, using the alexnet and cifar10 tutorials [99] to perform model creation, training

and inference. Bioinformatics and ML workloads run on a machine with two Intel Xeon

E5-2618Lv3 (Haswell) processors each with 8 cores (16 threads) running at 2.3GHz, and

128GB of RAM. The machine runs Ubuntu 18.10 with Linux 4.18.

2.6.1. Verifying Reproducibility

Package builds We build packages, both with and without DetTrace, inside a fresh Docker

instance to easily control filesystem state.3 Inside the container, we use a slightly modified

version of the reprotest utility version 0.7.8 [16] from the DRB project. reprotest builds

each package twice, varying the conditions for each build to exacerbate irreproducibility.

We configure reprotest to vary environment variables, build path, ASLR, number of CPUs,

time, user groups, home directory, locales, exec path, and timezone. We turn off domain

host, kernel, and file ordering as they are not supported by the older version of Debian we’re

running our builds in. Similarly, the umask variation would randomize file permissions which

DetTrace does not hide from user processes.

By default reprotest chooses variations randomly; we modified it to use a consistent configu-

ration for the first build of all packages, and a different consistent configuration for all second

builds, so that exactly the same environment is presented to DetTrace as in the baseline.

We create a control-chroot of a minimal Wheezy installation, downloading the source via

apt-get source, then installing a package’s dependencies via apt-get build-dep (referencing an

on-disk mirror to avoid network requests and ensure consistency across builds). Finally we

copy the control-chroot to create an experiment-chroot, thus guaranteeing the same starting

image for both builds. reprotest takes these starting chroots for running dpkg-buildpackage

with or without DetTrace. When using DetTrace, everything dpkg-buildpackage does runs
3DetTrace can also provide an isolated filesystem environment, but Docker provides easy image distribu-

tion across our cluster. DetTrace nests within Docker without issue.
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under DetTrace, which includes compilation, running tests (if the package is configured to do

so), and creating the final .deb package. After both builds are complete, reprotest validates

reproducibility with bitwise comparison of the two .deb packages. reprotest calls another

DRB tool diffoscope which compares two directories, checking for bitwise identical contents.

If diffoscope reports no differences the package is deemed reproducible, otherwise the package

is deemed irreproducible.

Under this Debian/reprotest configuration 15,761, or 91.9%, of the total available packages

build completely, whereas 40 time-out after 30 minutes and 1,344 fail to build. For the

evaluation in the next section, we focus on the set of 15,761 packages that build in the

baseline, whether reproducibly or irreproducibly. In fact, in a stock Wheezy system, zero

packages build reproducibly because of timestamps embedded by tar. So we adjust our

driver script to unpack the deb packages using dpkg-deb, then run strip-nondeterminism [19]

on the individual files, stripping timestamps. Finally, diffoscope can do a meaningful bitwise

comparison. The DetTrace builds do not require this workaround, as they are naturally

robust to timestamps. With the tar-timestamp workaround, 3,803 (24.1%) packages are

reproducible in a stock Wheezy system. The other 11,958 packages require additional manual

intervention to achieve reproducibility.

Bioinformatics While we did not leverage an adversarially-irreproducible environment

like reprotest for the bioinformatics tools, using hashdeep on the outputs from HMMER and

RAxML revealed irreproducibility across consecutive runs on a single machine. We confirmed

(using hashdeep) that the irreproducibility is removed when running under DetTrace. The

clustal workflow appeared reproducible, both natively and with DetTrace.

Machine Learning To check the reproducibility of our TensorFlow workloads, we recorded

the value of the loss function at each step during training. Unsurprisingly, these values are ir-

reproducible when running natively, even with serialized TensorFlow (see subsection 2.7.6),

due to, e.g., randomization of the training set. DetTrace renders these workloads repro-

ducible without any code changes.
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Given DT Reprod. DT Irreprod. DT Unsupported DT Timeout
BL Irreprod. (11,958) 72.65% (8,688) 0% (0) 15.99% (1,912) 11.36% (1,358)
BL Reprod. (3,803) 90.51% (3,442) 0% (0) 3.60% (137) 5.89% (224)

Given BL Reproducible BL Irreproducible
DetTrace Reproducible (12,130) 28.38% (3,442) 71.62% (8,688)

DetTrace Timeout (1,582) 14.16% (224) 85.84% (1,358)
DetTrace Unsupported (708) 7.91% (56) 92.09% (652)

Table 2.1: (Top) How build status changes moving from the baseline (BL) to DetTrace
(DT), and from DT to BL (bottom). DetTrace automatically renders reproducible 72.65%
of packages that are irreproducible in the baseline.

2.7. Evaluation

In this section, we describe our results using the DetTrace system with software builds, and

bioinformatics and machine learning applications.

2.7.1. Package Build Reproducibility

Package builds can fall into one of four categories when building under DetTrace. Some

package builds are reproducible or irreproducible as described in subsection 2.6.1. Timeout

packages do not finish building within 2 hours. We allot a high timeout for DetTrace

to account for its performance overheads and to avoid eliding high slowdowns from our

performance evaluation. Lastly, a package may be unsupported for a variety of reasons we

discuss in subsection 2.7.1.

Of the 12,130 packages that DetTrace supports (i.e., the build with DetTrace is neither

unsupported nor does it timeout), DetTrace is able to render every single package repro-

ducible. This represents over 800 million (non-comment/non-blank) lines of code from over

3.3 million source files building under DetTrace.

Table 2.1 shows how package status changes when moving from the baseline to DetTrace and

vice-versa, focusing just on those packages that build (reproducibly or irreproducibly) in the

baseline. The top table shows what happens to baseline packages when run with DetTrace.

For example, the first row shows that of the 11,958 packages that are irreproducible in the

baseline, 8,688 of them are automatically rendered reproducible by DetTrace. Reassuringly,
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packages that are reproducible in the baseline never become irreproducible under DetTrace.

The bottom table in Table 2.1 shows, for a package with a given DetTrace status, what

happens in the baseline. Packages that timeout or are unsupported by DetTrace are very

commonly irreproducible in the baseline, suggesting these are more complicated builds.

Unsupported Packages

A total of 1,912 packages failed to build due to known DetTrace limitations. The most

frequently encountered issue was busy waiting, which arose for 876 Java packages (45.8%

of failures) that fail to build. The next most common reasons are socket operations (302

packages, 15.8%), and sending intra-process signals (79 packages, 4%). The rest form a long

tail of miscellaneous system calls DetTrace does not yet support. Note our Java detection

heuristic does not apply to other cases of busy waiting, which result in a timeout instead.

Comparison with DRB

407 of the packages that are reproducible under DetTrace are identified as irreproducible in

the current stretch release by DRB [10]. While those packages are newer than the Wheezy

versions we use, the DRB effort has also categorized why these packages are irreproducible.

Common reasons include build paths being captured in a build artifact, timestamps embed-

ded in files and randomness affecting build artifacts. Though these issues have been resolved

in hundreds of other packages, each package requires analyzing the cause of irreproducibility

and getting patches accepted by maintainers. In contrast, DetTrace automatically makes a

build immune to such variations.

Comparison with Mozilla rr

Record-and-replay (RnR) systems are similar to DetTrace in needing to intercept sources of

nondeterminism. However, record-and-replay systems do not directly facilitate reproducible

builds, as opaque recording files do not enable one to inspect the source code of a package.

Recordings also require storage, typically much more than pure source code. We undertook

a small experiment with the latest version (5.2.0) of the rr tool, as it is the most robust RnR
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system we are aware of. We selected 81 packages that build from source natively in Ubuntu

18.04 (to provide a more modern build environment for rr than Debian Wheezy), and tried

building them with rr. Unfortunately, rr crashed on 46 of them due to a known bug with

unsupported ioctl calls. Of the 35 packages that build with rr, the average runtime overhead

was 5.8× (ranging from 3.3-22.7×), comparable to DetTrace. Unlike RnR, DetTrace avoids

opaque recordings and provides a human-readable audit trail from inputs to outputs.

2.7.2. Package Build Correctness

To validate the functional correctness of DetTrace, we used several of the packages built

using our system to ensure they work correctly. For example, we built the popular 3D

graphics package blender with DetTrace, installed the resulting .deb on a Debian wheezy

virtual machine, and used the UI to render a sample project. We built the core TeX/LaTeX

packages using DetTrace and used them to build the paper you’re reading.

To validate DetTrace’s correctness on a complex software system, we first built the LLVM

3.0 compiler from source without using DetTrace. We ran LLVM’s test suite via the make

check finding that 5,594 tests pass, 48 expectedly fail and 15 are unsupported in this baseline

configuration. We then ran the LLVM build under DetTrace (using a version of clang built

with DetTrace as well) and received the same test outcomes. Given the complexity of the

LLVM source code, we find these results with “self-hosting” LLVM encouraging evidence

that software built using DetTrace functions correctly.

2.7.3. Package Build Portability

To evaluate DetTrace’s portability, we perform package builds on two different machines

with different microarchitectures and OS versions. One machine is our standard CloudLab

node (described in section 2.6) and the other has Intel Xeon E5-2620 v4 processors (Broad-

well instead of Skylake) running Ubuntu 18.10 (instead of 18.04, Linux versions 4.18 and

4.15, respectively). We use the same reprotest-based build methodology to perturb the envi-

ronment, and ensure that each build on each machine produces a bitwise-identical package.

Due to time constraints, we randomly selected 1,000 packages reproducible with DetTrace.
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Every one built identically across the two systems.

Achieving portability for these packages required one extension to DetTrace. We found that

the size of a directory (returned by stat) varied across machines, though the directory con-

tents were identical, were created via extraction from the same tarball, and the filesystem

type and block size were the same. This behavior had not arisen across any of our previ-

ous experiments which used a single machine type, empirically illustrating the distinction

between portability and determinism. DetTrace implements reproducible directory sizes by

reporting sizes as a deterministic function of the number of directory entries.

2.7.4. Package Build Performance

DetTrace is designed for reproducibility, but is only moderately optimized for performance

overheads. Considering builds in aggregate, DetTrace incurs an total 3.49× slowdown in wall

clock time. Figure 2.5 shows a scatter plot for 860 randomly-selected DetTrace-supported

packages, showing DetTrace’s slowdown over the baseline (log scale) against the build’s

rate of system calls per second (as measured by DetTrace). We exclude builds that run

for less than 5 seconds in the baseline, and we run just one package build per machine to

avoid performance interference. We crop a few outliers from the plot to make it easier to

read: 4 packages that perform more than 25,000 syscalls/second (the max is 82,533 for the)

and exhibit slowdowns from 3.97-30.11×, and 3 packages that run about twice as fast with

DetTrace than in the baseline—though they appear to build correctly, e.g., their internal

tests all pass at the end of the build.

The light orange dots in Figure 2.5 show packages that do not use threads, while the dark

blue dots show threaded packages. Overall, there is a positive correlation between DetTrace

overhead and system call rate. Though there are just 76 threaded packages in this sample,

they exhibit some of the highest slowdowns due to common futex operations being converted

from blocking to non-blocking.

We find that system calls are frequent in package builds, with over 800,000 in an average
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Figure 2.5: DetTrace overhead (y-axis, log scale) is largely driven by the rate at which system
calls are performed (x-axis). Packages that use threads (dark blue dots) are typically slower
than those that do not (light orange dots).

build (Table 2.2). We also find many potential sources of irreproducibility in all of our

packages. rdtsc instructions are used by the loader ld for internal profiling, and by libc to

generate temporary file names for gcc. gcc also reads from /dev/urandom to produce unique

symbol names.

2.7.5. Bioinformatics Workflows

Our three bioinformatics workflows use process-level parallelism for performance, and ex-

hibit a range of overheads with DetTrace, dictated by the degree to which they are compute-

bound. Figure 2.6 shows the speedup each workload observes with more parallel processes,

normalized to sequential native execution. The highly compute-bound clustal performs
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Figure 2.6: Speedup of bioinformatics workflows with 1, 4 & 16 parallel processes, normalized
to sequential native execution (higher is better). Dark blue bars are native execution, and
light orange bars are DetTrace.

the best, scaling well with additional processes and exhibiting under 2% overhead with

16 processes. In contrast, hmmer and raxml execute system calls at a rate 19× higher (over

55,000/second on average), incurring more serialization. raxml in particular writes to stdout

frequently, which are potentially-blocking operations that are more expensive for DetTrace,

resulting in 6.2× overhead with 16 processes. hmmer has more non-blocking system calls

which enable better scaling, and just 1.56× overhead with 16 processes.

2.7.6. TensorFlow

We ran the alexnet and cifar10 programs in three configurations, each of which run exclusively

on the CPU: 1) natively in parallel, 2) natively but with TensorFlow configured to use a single

thread and 3) with DetTrace. Since TensorFlow uses thread-level parallelism via OpenMP,

DetTrace’s serialized threading incurs a large slowdown over native parallel execution on

16 cores: it is 17.49× slower on alexnet and 11.94× on cifar10. Compared to serialized

native execution, however, DetTrace fares much better with slowdowns of 1.51× and 1.08×,

respectively, reinforcing that DetTrace exacts a small performance price for non-threaded

compute-bound workloads.
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System call events 843,621.53
User process memory reads 396,474.88
rdtsc intercepted 33,487.55
Requests for scheduling next process 6,049.51
Replays due to blocking system call 1,283.72
Process spawn events 2,377.54
read retries 141.28
/dev/urandom opens 159.92
write retries 113.98

Table 2.2: Per-package average number of events encountered by DetTrace.

2.8. Related Work

DetTrace’s unique reproducible container abstraction takes inspiration from many previous

systems. We categorize this previous work into record-and-replay systems, and deterministic

execution systems.

Many record and replay (RnR) systems have been proposed both from academia [47, 52,

53, 68, 76, 90, 100] and industry [12, 23, 84]. These systems record a trace of one nonde-

terministic execution to enable subsequent replay of that execution, typically for debugging

purposes. These systems have broadly similar interception requirements as DetTrace, since

system calls are a prime source of irreproducibility that must be recorded in the trace.

DetTrace borrows some implementation techniques from Mozilla’s rr [84] as it also relies

on ptrace (a quantitative comparison with rr appears in subsection 2.7.1). Many RnR sys-

tems target multithreaded workloads, as those are very challenging to debug without RnR

support, and provide high-performance parallel recording and replaying.

Deterministic execution schemes enforce determinism during program execution. Deter-

ministic operating systems tackle several of the systems issues we describe in this paper,

providing deterministic versions of OS abstractions like processes and threads. While De-

terminator [31] provides new OS abstractions for deterministic fork-join parallelism, and

DDOS [61] focuses on local network interactions, dOS [34] is closer to our work in offering

a deterministic process group abstraction. The shim abstraction in dOS bears similarity
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to Linux’s ptrace API. Unlike DetTrace, dOS supports parallel execution of both threads

and processes. However, dOS uses RnR for filesystem interactions, defining the boundaries

of its determinism abstraction too narrowly to be useful for software builds which interact

extensively with the filesystem. More generally, a custom OS is a heavyweight prerequisite

to perform deterministic computation, and existing deterministic OSes have not evaluated

portability across different microarchitectures.

Other deterministic execution schemes focus on a single multithreaded process, determiniz-

ing interactions through shared memory. Some schemes target arbitrary binary programs

[33, 49, 50, 60, 65, 70, 77, 78, 79], providing generality at a modest performance overhead.

Other schemes leverage language support to provide determinism for Haskell [39, 66, 69, 74,

75, 83] or Java [35, 36] programs. Whether language-agnostic or specific, these approaches

eliminate the influence of thread scheduling, but do not determinize IO interactions with

the underlying OS and filesystem. The scope of their guarantees is thus too small to be

useful for reproducible builds. One exception is DetFlow [94] which provides deterministic

parallel execution for batch jobs, though it lacks robust system call interception and requires

a coordinator layer written in Haskell.
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CHAPTER 3

ProcessCache: Automatic Process-Level Memoization

This chapter covers the ProcessCache project. In many ways, ProcessCache is a spiritual

successor to DetTrace. ProcessCache furthers what is possible with low-level process ma-

nipulation by building on the methods we developed with DetTrace. The implementation

of ProcessCache is informed by problems encountered in DetTrace.

3.1. Introduction

Existing systems already attempt to skip unnecessary recomputation. At the language-

level, a runtime may attempt cache previously computed results, a technique known as

memoization. This technique is most popular in purely functional programming languages

like Haskell, where one can statically determine the IO and side effects of a function. Futher-

more, programmers may implement their own memoization or caching in an ad-hoc manner

for performance gains.

Build systems like Make [6] and Bazel [3] also skip unnecessary rebuilding when it deter-

mines none of the input sources to a build target have changed. The user must manually

specify the input sources to a build step and the output build artifacts. Under-specifying

or over-specifying dependencies or outputs can lead to erroneous builds [96], and the all too

common need to make clean when software builds are not properly updating. Forward build

systems [97] like Rattle [14] attempt to avoid these issues by automatically inferring build

dependencies and build targets.

Incremental computing aims to only recompute what is strictly necessary when inputs have

changed, thus saving computing time and energy. This technique can be implemented at

the language level [59] or as a language-level framework/library [17]. Incremental computing

can be combined with stream processing for low-latency result updates [80].
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3.2. Caching/Memoizing Computation

We generalize exisiting ideas of caching and memoization to work at the whole-program

granularity. We take a systems approach to avoiding unnecessary recomputation.

In this paper, we introduce ProcessCache a system for automatically skipping unnecessary

recomputation. ProcessCache automatically determines all inputs an outputs to a com-

putation and caches the results of any computation it has no seen before. Whenever the

same program is executed with the same inputs, ProcessCache skips the actual execution

of this program and uses the cached results instead. ProcessCache can be thought of as a

general purpose make-like system, except no makefile is required and works on diverse sets

of programs beyond build system.

Linux utilizes the execve system call to launch a new process image. This is the standard

way a program is launched. We refer to a program as the root command that ProcessCache

will execute on.

ProcessCache parses the command line arguments passed to it and attempts to execve the

given program. ./process _cache [process cache params] – <exe> [exe params] A program

is comprised of possibly many processes, those processes may themselves spawn new child

processes and contain multiple threads, any child process may further call execve spawning

new sub-programs. See Figure 3.1 for details. The root exec-unit will always exists, as it is

created by ProcessCache based on the CLI arguments as described above.

We use a unique key to uniquely identify every program 3.3.6. Whenever ProcessCache

sees a call to execve, it checks the program specified by the system call. ProcessCache

does a lookup in our cache, a cache hit means we have seen this program before. The cache

contains the outputs of this program. Instead of executing the program, ProcessCache copies

the output file and write the correct output to stdout and stderr. ProcessCache essentially

skips running the program but still produces the correct output of the program.
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3.2.1. Detemining Program Inputs

Modern programs have many explicit but also implicit inputs. Explicit inputs include:

command line arguments, input files, interactive input via stdin, network connections, pipes,

etc. Implicit inputs include: any configuration files ready by the program, reading bytes

from the network, environment variables.

Any state that could affect the execution of the program could be considered an input. Some

of these inputs may not be so obvious, such as file metadata, time, signals, etc.

ProcessCache relies on the assumption that program output is a deterministic function of its

inputs, see section 3.2.2. By considering all the inputs to a program we can define a unique

program execution as the combination of the program binary and all of its inputs. As long

as none of the program inputs have changed, it is safe to skip reexecuting a program, and

simply use the cached results.

For correctness, ProcessCache attempts to consider as many inputs to a program. Process-

Cache must know be able to observe all program inputs at "exec-time" to determine if any

program input has changed. This is the main criteria for deciding which inputs ProcessCache

considers: an program input must be observable before the program is executed.

3.2.2. Determinism

ProcessCache operates under the assumption that if a program is executed multiple times,

with the same program inputs, it will produce the same outputs, that is, the program

executes deterministically.

In practice this is not always the case due to various sources of non-determinism that sneak

in [82]. ProcessCache is compatible with the orthogonal work on dynamic determinism

enforcement at various levels. However, ProcessCache does not require a program to be

deterministic or to use a dynamic enforcement mechanism to produce correct output. When

ProcessCache encounters a never before seen program plus inputs combination, it captures

the results of this program. This is a valid result for this program, subsequent executions of
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this program and inputs will be skipped and the cached results will be used instead.

This works around issues of nondeterminism from thread and process scheduling, etc.

As long as we consider all inputs (even tricky ones like time) to a program, it is valid to

cache and skip. ProcessCache could be combined with other systems like Dettrace, Arnold

[47], Dthreads [71], if you do not like our approach.

3.2.3. Handling Program Side-Effects

A pure program would have no observable effects.

An effectful program will have some observable behavior on the system. Most commonly,

a program will make changes to the filesystem, such as modifying, deleting, or writing to

files. Write to stdout or stderr. A program may also write bytes to the network, or display

results on the terminal or a graphic user interface.

Any obeservable change to the state of the world is known as a program side effect. To

effetively simulate a program being skipped with ProcessCache we must be able to perform

the same side effects a program would have done. ProcessCache handles common side-effects

seen in batch workloads: writing to output files: stateful changes to the filesytem.

ProcessCache does not support networking. There is a long list of possible side effects

a Linux program may support which are not implemented due to too much engineering

effort, these include: sending signals, creating FIFOs, or many OS operations. These are

not fundamental shortcomings of our design however, and can be implemented into our

prototype with more engineering effort.

3.2.4. Correctness

When skipping, any caching system like ProcessCache should give the same results as if the

computation was to actually be executed. ProcessCache is able to skip redundant programs

and only re-execute programs whose inputs have changed.

As an example consider make. Running make from a "clean" state with no build files will
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force all build rules to execute. Future runs of make will only execute the build rules where an

input has changed. We expect make to produce the same results after a "make clean" versus

running "make" and allowing make to automatically skip unnecessary re-computation. This

property is known as from-scratch-consistency.

ProcessCache is designed in such a way to always maintain correctness. ProcessCache intro-

spects all relevant IO events a program executes. So it is always able to precisely determine

all actions required to later emulate the execution of the program. When ProcessCache de-

tects IO events it cannot handle and skip, e.g. writing bytes to the network, sending signals

to other processes, ioctl, ProcessCache can always maintain correctness by simply choosing

not to skip the program and falling back to executing it.

3.3. ProcessCache Design

We present ProcessCache, a system to automatically cache and skip unnecessary reexecution

of computation. By tracking program input and outputs, ProcessCache is automatically able

to detect redundant computation. The next time the same exec is executed, ProcessCache

checks if any input has changed. If no input has changed, we can skip re-executing the

exec-unit and simply re-execute the program side-effects. An external observer should not

be able to determine whether ProcessCache actually executed a exec-unit or skipped it, save

for a noticeable speed-up of execution time.

ProcessCache is able to skip entire "exec trees", that is, programs made of multiple calls to

processes and execs.

3.3.1. Determining Granularity of Memoization Units

We consider several candidates for cache-unit. A cache-unit is the smallest "unit of work"

any system in this space may consider for caching and skipping. These can be small like

regions of instructions. They can be domain specific like compilation-units for build systems,

or entire programs. So, what is the right granularity of computation to cache? We consider

several factors:
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Figure 3.1: The exec-unit provides a useful abstraction over diverse program fork-exec struc-
tures. Processes are represented by darker circles with the letter P. Threads are represented
by lighter circles with the letter T. (a) In the simplest case, a program contains one exec-
unit with one process. (b) An exec-unit may internally contain multiple processes and those
processes may be multi-threaded. (c) A program containing multiple exec-unit with their
own possibly complex internal structure.

• Size of cache-unit.

• Ease of tracking cache-unit inputs.

• Number of opportunities to skip cache-unit

At one extreme end, we could cache and skip an entire program, but then any changes to

an input would force us to reexectue the entire program, so our skipping wouldn’t be very

useful. On the other end of the spectrum, there are systems like Shortcut [51] which are able

to skip "mostly-deterministic" regions of code. Shortcut is able to skip chunks of program

instructions at a time. Shortcut’s approach provides considerable opportunities to possibly

skip, but this comes at the cost of complicated low-level machinery to track inputs and

skip instruction-level computation. It is natural to consider the process as a candidate for

our caching-unit. In a multi-processed program, we could then skip unnecessary processes,

only executing those whose input has changed. Processes are difficult however. A cache-

unit should be uniquely identified by its inputs, for a Linux process, the starting input

includes the entire state of the parent process from which our process was forked/cloned

from. This "input" process-image state is difficult to track. Instead, ProcessCache uses the
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Linux execve system calls as our cache-unit. execve provides several advantages to caching.

Unlike processes, execs have clear inputs: an exec can be uniquely identified by a tuple

containing the: binary executable, command line arguments, environment variables, and

any IO inputs read at runtime. This allows us to quickly and easily check if a exec-unit

needs to be recomputed (one of its inputs has changed) or can be skipped.

Other benefits:

• Many Linux programs are written in a "fork-exec" style of computation. So execs

provide a natural cache-unit.

• This design naturally supports multi-process execs (one exec call which spawns mul-

tiple processes) and multi-threaded programs. We only consider the execs and im-

plementation details of a program like number of processes, threads, pipes, etc are

abstracted over.

3.3.2. The exec-unit

ProcessCache works at the granularity of exec-unit. ProcessCache caches the results of exec-

unit and at every exec IO event, determines whether it can skip this exec-unit. Figure 3.1a

show the simplest case for a program: a single exec-unit containing one process. The exec-

unit abstracts over the process and thread structure of a program. Just like processes form a

natural tree structure for programs, exec-unit also create a tree structure as shown in Figure

3.1c. Every individual exec-unit in Figure 3.1c is a candidate for skipping. Furthermore,

ProcessCache can also cache entire exec-unit trees or subtrees.

Programs with a fork-exec structure are the best candidates for ProcessCache, as this creates

the most candidate exec-unit for skipping. Many Linux workloads follow the fork-exec

paradigm, making our exec-unit a natural choice.

3.3.3. Tracing Program IO Events

Build systems could be consider a type of caching/memoizing system where the user is ex-

pected to explicitly list every dependency and output of a build. This process both error
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prone and tedious. A user could over-specify (forcing the build system to rebuild unnec-

essarily) or under-specify (no rebuilding will happen even though an input has changed)

dependencies. To avoid these issues, ProcessCache automatically determines all program

dependencies by tracing all relevant IO events a program executes.

Our tracing happens at the system call level. We trace relevant IO system calls. This allows

us to precisely determine the inputs and outputs to a program. It would be prohibitively

expensive to trace every system call a program does. So ProcessCache only traces a subset

of all system calls. For example, IO-bound processes can perform many calls to read and

write. Instead for file events, we intercept calls to open, creat, openat, etc. By introspecting

the mode argument to this system call we can determine whether this file was open for read

(input file) for write, truncate, read/write etc. So we use the argument flags to conservatively

determine file inputs and outputs.

System Call Events

We find only a small subset of all system calls are necessary to intercept for ProcessCache.

Mainly, ProcessCache intercepts and analyzes only those system calls that actually modify

the filesystem or informs the program about the starting state of the world. These are:

access, clone, execve, exit, fork/clone, the stat-family, getdents, rename, and unlink.

In isolation, individual system call events are insufficient to correctly generate program

preconditions and postconditions. System calls tell us part of the story but: system call

ordering, parameters, and return values are also required. System calls, their arguments and

return values are observed to generated higher-level constructs we refer to as SyscallEvents.

This allows ProcessCache to work with high-level events which abstract over the low-level

details of OS system calls. ProcessCache takes these ordered lists of SyscallEvents and

generates preconditions and postconditions 3.3.6.
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3.3.4. Cache Design

Our cache holds all the program executions that ProcessCache has traced. Our cache aims

to provide quick cache look up to determine whether we have seen a program execute be-

fore. The cache must persist across many program executions, so it is persistent state on

disk. Our cache maps keys which identify unique program executions to all metadata that

ProcessCache generated during program tracing. This metadata is utilized by ProcessCache

to determine several things: the inputs to this program execution and the state of the world

before this program executed, the side-effects and state after this program executed, all

output files the program generated.

3.3.5. Tracing New Executions

A cache miss means we have never seen this program plus inputs execute before. Or some

preconditions for the execution fail, ProcessCache traces this as a new execution. Pro-

cessCache will utilize its event tracer to introspect all IO events for this new execution.

ProcessCache monitors all processes and threads for the current exec-unit and any child

exec-unit. This creates an execution tree of exec-units. At the end of this program execu-

tion, ProcessCache generated IO event “facts” to create the preconditions and postconditions

of the execution tree. The preconditions and postconditions are serialized written out to

our persistent cache.

3.3.6. Uniquely Identifying A Program

In ProcessCache, a computation can uniquely be identified by the inputs to our exec-unit.

Specifically a computation can be uniquely identified by the following tuple: (program

binary, command line arguments, environment variables, current working directory, and

input file).

Preconditions & PostConditions

Preconditions are predicates about the state of the world before a program is executed. For

example, the content of all input files, but extends beyond inputs to a program to include

current working directory, and state environment variables. Postcoditions are predicates
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about side-effects that a exec-unit executes during its execution. Postcoditions tells us what

the state of the world must look like after a program executes, e.g. file foo.txt now exists at

a certain location in the filesystems with some specific contents and metadata.

Generating Preconditions and Postconditions

Once execution ends, Process Cache must analyze the list of system call events for each

resource. Process Cache iterates through the list and adjusts the “current state” of the

resource in a state machine type of way until a final "state" is produced when the full list

has been enumerated. It does this twice: once to produce the final “preconditions” and once

to produce the final “postconditions”. Process Cache starts with a basic “starting state”

of the resource, where no information is known, and as it examines the list of system call

events, each event causes a different transition of the state of the conditions.

The state machine technique may be obviously necessary for postconditions, because post-

conditions are determined by many events happening to the resource. It may seem redundant

or unnecessary to iterate through all events to produce the preconditions. One might instead

try to generate the preconditions of a resource by simply taking the union of the events that

happened to a resource, or just looking at the first event that took place. This, however, is

not a sufficient method for generating preconditions.

3.3.7. Checking & Skipping Unnecessary Program Executions

In this section we outline the steps necessary for skipping program executions.

Skipping Program Execution

When ProcessCache determines an exec-unit can be skipped 3.3.7 it does the following:

1. ProcessCache determines the current exec-unit can be completely skipped.

2. We could simply inject a exit/exit-group (exit-group is more correct as it handles exit

of multithreaded programs properly) system call into the current process. This would

not always work as program may rely on the close-on-exec semantics of programs to

execute properly. So instead we execute the execve system call with an empty binary
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which immediately call exit with the correct error code.

3. We consult the cache and execute all side effects this computation would have done.

Namely, we copy all relevant output files to their correct location and write the correct

bytes to stdout and stderr.

4. The rest of the program continues executing under ProcessCache.

Skipping Leaf Nodes

We start by explaining how ProcessCache skips a "leaf-node". A leaf-node is any exec-unit

which does not have any further child exec-units. The next section generalizes this idea to

caching entire exec-unit-subtrees, these are arbitrary exec-units which may have children.

See Figure 3.1c for an example of a program with a exec-unit tree.

ProcessCache makes skipping decision at program execve-time. ProcessCache uses the ar-

guments to execve plus additional context (see Section 3.3.6) to generate a unique key. This

key is used for a lookup in our cache. The cache contains two important sets of predicates:

the set of preconditions that must hold true for us to be able skip the execution, and the

postcondition set. ProcessCache iterates through the set of preconditions asserting all of

them hold true (See Section 3.4.2 for more information). If all the preconditions hold true,

ProcessCache knows none of the inputs to the program have changed. Therefore it is correct

to skip this program. ProcessCache skips the program execution as outlined in Section 3.3.7.

ProcessCache uses the postcondition set to replicate the side-effects this program would

have made had it run. An outside observer should not be able to tell actually running the

exec-unit versus ProcessCache skipping it, aside from a difference in execution time.

Skipping Entire Subtrees

Skipping leaf nodes is simpler as we only have to reason about the pre and postconditions to

an individual exec-unit. Skipping exec-unit-subtrees requires us to reason about dependen-

cies between exec-units we are attempting to skip. This means that ProcessCache assumes

that different exec-units do not have any races with shared files, this assumption can be
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checked by systems like RacePro [67]. The algorithm for computing the preconditions for a

multi-exec-unit subtree is currently a work in progress. Note that simply unioning precon-

ditions of all the child exec-units within a subtree is not enough.

3.4. ProcessCache Implementation

ProcessCache is implemented as a command line utility. Any program can run under Pro-

cessCache by simply prepending ProcessCache to the command, for example > ./process-

cache ls -ahl. ProcessCache is written entirely in Rust.

3.4.1. Tracing IO Events of Tracee(s)

ProcessCache uses the Linux ptrace system call for tracing IO events, skipping exec-unit,

and redirecting IO streams. ProcessCache is implemented entirely as a userspace Linux pro-

gram and does not require elevated privileges to execute beyond the CAP_SYS_PTRACE

capability.

While our prototype relies on ptrace and Linux-specific implementation details, the methods

presented in this paper may work with any IO tracing mechanism. Our methodology may

be used with another OS (windows, MacOS) or some other interception mechanism (dtrace

or in-kernel).

3.4.2. Asynchronous Handling of Ptrace Events

ProcessCache implements a reusable library and runtime for handling ptrace IO event. This

provides an a high-level abstraction and allows code to be written in an asynchronous pro-

gramming model, which mirrors the logical steps of the code. See Section 5.2.2 for a detailed

explanation.

Precondition Checking

All preconditions must hold true if ProcessCache is to skip an exec-unit. ProcessCache

iterates through the list of preconditions asserting they still hold true. For example, if

a precondition states a some file foo.txt should exists with some contents and metadata,

ProcessCache will perform the necessary system calls to assert these predicates hold true.
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ProcessCache attempts to optimize this step in two ways: First, the precondition set is

already the minimal set of predicates that must hold true (any redundant predicates are

eliminated before this step). Second, we attempt to perform the minimal set of system calls

to check preconditions.

3.4.3. Limitations

ProcessCache does not fully handle pipes. Intra-exec-unit pipes are easily handled by Pro-

cessCache thanks to our exec-unit-level abstraction. An entire exec-unit containing a pipe

will be entirely skipped or not at all. However, if a pipe spans multiple exec-units, problems

may arise. For example, what if two processes in different exec-units communicate via a

pipe. Could be skip the execution of one exec-unit but not the other? This exec-unit may

be stuck waiting to read from the pipe because the other process was skipped. ProcessCache

could support pipe operations by keeping track of the pipe file descriptors inherited across

execve. Tracking the movement of file descriptors in this matter is not trivial.

Standard input is also not handled. ProcessCache is designed to handle non-interactive,

batch processing style programs. In general, ProcessCache must know all inputs to a program

at execve-time to make a decision about skipping a exec-unit.

ProcessCache does not handle networking IO. If ProcessCache detects the use of networking

or socket related system calls, it simply stops tracing and lets the execution run without

caching it. Networking computation is inherently based on back and forth communication

(requests and responses), which is a similar paradigm to the problematic pipes described

above. For example, if the serving process is skipped, there will be no one to respond to the

requests. Sockets are similar in some ways to stdin. ProcessCache needs to validate that

inputs have not changed at the start of execution, but sockets can constantly be receiving

new inputs, and this model does not inherently work with ProcessCache.
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3.5. Evaluation

The following evaluation was written entirely by Kelly Shiptoski with some minor revision

by me. In our evaluation of ProcessCache, we hope to answer the following major questions:

• How well does ProcessCache perform? Does skipping amortize the cost of caching?

• Is ProcessCache robust to a diverse set of workloads?

• Can it be demonstrated that ProcessCache correctly skips executions, provided those

programs do not violate the minimal assumptions ProcessCache makes (Section 3.4.3)?

• How does ProcessCache perform when some executions are skipped and others run?

• How much space does the cache use?

• What is the difference in performance when ProcessCache is running from a empty

cache versus an existing cache?

The ProcessCache prototype is currently in its last stages, and we are working to identify

slow parts of the system and optimize them. This evaluation covers optimizations up to this

point, followed by our plans for the full paper evaluation.

To analyze how ProcessCache performs, we plan to employ a case study methodology to

create a set of benchmarks with diverse types of programs. These include:

1. A set of bioinformatics workflows, all of which perform different types of biological

computation with a different number of spawned processes performing the computa-

tions in parallel.

2. A comparison to a real world build system, to see how ProcessCache compares to

an existing similar system.

3. A to-be-determined batch workload: current ideas are a process parallel program

where each job compresses a file or converts the format of a photo.
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Bioinformatics Workflows

Currently, we have been focusing on the bioinformatics workloads to develop our Process-

Cache prototype to a minimum viable product. These workloads are highly parallel and

CPU bound, so they are a perfect candidate to benefit from the caching provided by Pro-

cessCache. Second, these workloads are highly diverse; they vary in how many processes

they spawn to compute jobs, baseline runtimes, and the time it takes to compute a single

job. Plus, as we began to run these workloads under ProcessCache, they provided quite

diverse performance results, and so provided a good benchmarking system to analyze how

the optimizations improved ProcessCache and to help us spot regressions.

We first trialed the benchmarks under ProcessCache when we felt the system was fairly stable

and robust. We found that there was considerable overhead, with the average slowdown

being 2.5x, raised especially by the RAxML workload which had a slowdown of 6.8x (see the

hashing files results in Figure 3.3). Obviously, these slowdowns are undesirably high, as

ProcessCache strives to be a lightweight system, and if caching is a lot of overhead, skipping

will not make up for it and using the system will not be worth it.

To discover why ProcessCache was not performing to our expectations, we used perf [11] to

examine which functions were being called the most frequently. We also effectively turned off

sections of the system and ran the workloads under stripped down versions of ProcessCache,

to examine which components were running for the most time. See Figure 3.2 for a detailed

percentage overhead breakdown of the different components of ProcessCache for each bioin-

formatics workflow. The following components comprise ProcessCache and contribute to its

overall overhead: system call interception via ptrace, system call fact generation at system

call stoppages, the generation of preconditions and postconditions, hashing input files, and

copying the output files to the cache.

It becomes quickly apparent that ProcessCache is spending an exorbitant amount of time

hashing input files, and is doing so in every baseline. The reason ProcessCache is hashing
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Figure 3.2: Percentage overhead breakdown of each of the different components which com-
prise ProcessCache for each bioinformatics workflows. The most obvious source of overhead
is hashing input files, followed by copying output files to the cache.

input files is to provide a precondition for the program; ProcessCache hashes the input file

before the process actually opens it, in case the process modifies it. This has to be done at

that time, and cannot be offloaded to some background task, or the wrong version of the

contents of the file can be hashed. But, as we can tell, the correctness of hashing comes at

a steep cost.

In order to work around the limitations of hashing, two solutions were proposed: copying

the input files to the cache, and checking the mtime of the resource instead of hashing it.

Neither of these is perfect. Copying the files to the cache provides moderate improvement,

but does not provide the performance gains we are looking for, and also adds to the space

that the cache requires. Using the mtime mechanism provides much better speedups, and

so was incorporated into the system as an option. Checking the mtime is fragile, and is not

a portable solution. Luckily, ProcessCache can be run using whichever of these metrics the

user chooses, depending on what they value most. The mtime checking mechanism provides

quite a performance boost, but the RAxML workload, which has the most output files (by a

significant margin) of the bioinformatics workflows, still has an overhead of 2.7x (see the

mtime + sync copying results in Figure 3.3).
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Figure 3.3: Slowdown (normalized to baseline execution) for each bioinformatics workflow.
The blue bars indicate the slowdown over baseline of running under ProcessCache with
the mtime checking mechanism and copying outputs files to the cache asynchronously (one
background thread). The red bars indicate the slowdown over baseline of running under
ProcessCache with the mtime checking mechanism and copying output files to the cache
synchronously. The yellow bars indicate the slowdown overbaseline of running under Pro-
cessCache with hashing input files as the checking mechanism and copying output files to
the cache synchronously. Lower is better.

The second worst offender when it comes to overhead is the component of ProcessCache

that copies the output files to the cache. In the original ProcessCache prototype, this

was done at each process exit; this means that ProcessCache is effectively blocked (and so

are all the executions it is tracing) until it finishes copying the output files to the cache.

Fortunately, unlike hashing input files, copying output files can be moved off the critical

path. Because ProcessCache has basic assumptions about how processes modifying the

same file behave (Section 3.4.3), and because output files are not copied to the cache until

the end of execution, output files can be copied to the cache by background threads. A

rudimentary experiment with just one background thread shows promising results (Figure

3.3. We plan to increase the number of parallel background threads copying output files to

the cache and incorporate this into the system to improve the performance even more.
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CHAPTER 4

Tivo

So far, we have considered OS-level program tracing. In this chapter, we show tracing is

useful at other levels of the software stack. This project traces messages at the language-level,

this allows us to leverage language-specific and context-specific information not available

with OS-based tracing. This allows us to work at the proper level of abstraction.

4.1. Introduction

This chapter presents Tivo, a system for lightweight record-and-replay (RR). In contrast to

traditional "fully deterministic" RR solutions, lightweight RR focuses on handling nondeter-

minism arising from thread communication for programs with concurrent, message-passing

architectures. By decreasing nondeterminism in programs, lightweight RR decreases the

number of intermittent failures in program’s test suites. We evaluated the effectiveness of

lightweight RR on Servo, a highly concurrent web browser. Our evaluation shows lightweight

RR is effective at greatly reducing intermittent failures for some tests, but not others.

4.2. Background

4.2.1. Concurrent Message Passing Channels

Slowdowns of single-core year-to-year performance gains in computing systems gave rise

to the need for highly concurrent systems that take advantage of multiple cores. Which

are now available in most CPUs. Concurrency is usually implemented using threads with

shared-memory based communication; locks enforce exclusive writes to memory. This type

of systems make it difficult to reason about useful properties of concurrent programs, e.g.

data race freedom and deadlock avoidance. Furthermore shared data and the locks that

protect it are often logically decoupled. That is, grabbing a lock before accessing shared

data is not enforced by the programming language or runtime. Instead, in the worst case,

it is an implicit programming convention buried in the documentation, or at best, enforced

through the object API and encapsulation.
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An alternative concurrency model popularized by languages like Go, Erlang, and Rust:

message passing through channels. With message passing, isolated threads or processes

communicate via channels, sending data as messages to each other. This avoids the need

for the programmer to worry about data races, memory consistency models, or other low-

level details. Furthermore channels come in many flavors: bounded, unbounded, blocking,

non-blocking, and more. Channels can be implemented using shared memory, with lock or

lock-free queues. Channels have comparable performance to threads and shared memory.

4.2.2. Intermittent Failures In Servo

Servo [18] is a parallel browser engine with the goals: highly concurrent, memory safe,

and easily portable to various opearting systems and hardware. Servo achieves these goals

thanks to its use of Rust: a novel systems programming language with stronger memory

safety, data race freedom, and static guarantees. Servo also features a concurrent message

passing architecture. This allows Servo to be highly concurrent, maximizing parallelism,

while maintaining its components decoupled.

Nondeterminism is inherent to concurrent systems. Servo is no exception. Adding to the

challenges of programming parallel systems, debugging is more difficult than in sequential

programs. This difficulty is further exacerbated by nondeterministic interleaving of threads.

Servo runs a large suite of browser-agnostic tests known as web-platform-tests (WPT) [21]

as part of the continuous integration system. WPT tests are expected to pass before changes

to the code base are accepted. Unfortunately, Servo has hundreds of WPT tests that fail

randomly for unknown reasons, known as intermittent failures. Since many intermittent

tests seemingly pass or fail at random. There are unknown sources of nondeterminism in

Servo which cause intermittent failures.

4.2.3. Existing Record-and-Replay Solutions

Record-and-replay has been widely studied in academia [47, 48, 55, 57, 61, 76, 92] and

used in industry [101]. One such state-of-the-art system is Mozilla’s rr project [84], which
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serves as a robust RR debugging framework. It is successfully used in production with code-

bases consisting of millions of lines of code like the Firefox web browser. At a high-level, rr

works by intercepting nondeterministic OS system calls and recording their values, as well

as recording thread and process scheduling. So later it can faithfully replay them. During

replay, rr uses its log to replay the system calls with the same values seen during record,

while dynamically handling scheduling to schedule threads and processes in the same order.

rr can fully determinize any program, so it must record a large amount of information about

an execution, so its record logs end up being quite large. Furthermore rr must sequentializes

execution of threads and processes, incurring particularly high performance overhead on

parallel workloads.

While in principal rr is able to solve the problem with intermittent failures in Servo, we

believe there can be a far more lightweight, high-level approach. rr’s implementation is OS-

dependent as it relies on many low-level OS details. Lightweight RR attempts tame some

of the nondeterminism inherent to concurrent systems while operating at a much higher

level: channel communication and thread scheduling. All while preserving parallelism in

programs, and offering low overhead.

4.3. Lightweight RR

Lightweight RR records and replays multi-threaded systems where communication and coor-

dination happens mainly through channel communication. Lightweight RR does not record

all metadata required to perfectly replay a program execution. Instead, it aims to squash

several sources of nondeterminism inherent to concurrent systems. This trade off allows

lightweight RR several benefits: the implementation is far simpler than a full-fledged RR

system, parallelism is maintained, only a tiny fraction of program execution is recorded

making the implementation fast and log size small.

Lightweight RR handles the following sources of nondeterminism for channels 4:
4The ideas presented here for lightweight RR are applicable to other areas of concurrency and program

replay. See Section 4.9.1 for other possible use cases.
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• Message arrival order. While messages sent by a thread down a channel are guar-

anteed to arrive in FIFO order, multiple threads may be sending messages to the same

channel simultaneously. Thus, message arrival order can vary.

• Select operation. Channel implementations often have a select operation. A select

allows for receiving one or more message(s) from any channel with a message at the

time of the operation, or blocking until a message arrives. Which messages are ready

on a given select is timing dependent, so this is a nondeterministic operation.

If the above were the only sources of nondeterminsm in a program, out approach would

always successfully replay any recorded execution. Programs have nondeterminism outside

the scope of lightweight RR, e.g. network communication, IO, thread locking [82]. Those

programs may not replay successfully with lightweight RR. If the replay execution diverges

from the recorded execution, we say the execution has desynchronized. We believe we could

combine lightweight RR with a lightweight dynamic determinism enforcement technique as

done in DetFlow [94].

Lightweight RR is robust to desynchronizations. When desynchonization is detected,

lightweight RR can choose to stop replaying the recorded execution and falls back to al-

lowing the program to run natively, or abort the program.

4.3.1. Lightweight RR for Intermittent Failures

Lightweight RR is designed to work in the context of software tests with intermittent failures.

Any test that nondeterministically return: unexpected results, timeout, or crash, can benefit

from lightweight RR. First, we must capture a execution of the program with an “expected”

results, this may take many tries depending on the test. These “expected” logs are stored

as part of the testing infrastructure. Later the tests run using lightweight RR in place of

the standard channel library. The test run in replay mode where lightweight RR replays the

“expected” execution. This allows lightweight RR to lower the nondeterminism and thus the

number of intermittent failures for programs.
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4.3.2. Supported Operations

For any message-passing channel implementation, we define the receiver as the reading end,

and the sender as the writing end. We assume the channels are unbounded (do not have a

maximum capacity), and may support multiple producers but a single consumer (MPSC).

These assumptions fit the needs of most programs, However, this is not a fundamental short

coming of lightweight RR. Nothing stops us from supporting bounded or multiple producers

multiple consumer (MPMC) channels.

Lightweight RR supports all common operations on channels, including:

• receive: Block until we receive a message from a sender.

• select: Block on one or more receivers until one or more message(s) arrives from any

channel.

• try_receive: Non blocking variant of receive. If no message is available, an error is

returned.

• timeout_receive: blocks until a message arrives or the specified time elapses.

• send: non-blockingly send a message through a channel.

4.3.3. What is lightweight?

Lightweight RR does not reinvent the wheel by implementing deterministic channels from

scratch, instead it is implemented as a wrapper around an existing channel implementation.

Furthermore, unlike fully deterministic approaches to RR, lightweight RR is implemented at

the language-level as a user library, agnostic to the operating system and hardware details.

We highlight the following advantages between traditional RR methods and lightweight RR:

• Implemented as a language-level library, portable across operating systems and com-

puter architectures.
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• Threads run in parallel.

• Only channel communications events are recorded. No program data is recorded.

Leading to smaller record logs.

• Robust to divergence of program execution during replay.

• The implementation wraps an existing channel implementation. Thus, the implemen-

tation is a straightforward transform.

4.4. Design

4.4.1. Assigning Deterministic IDs

In order to faithfully replay execution of a program, we must assign a deterministic thread

ID (DTI) to all threads. DTIs must be unique and deterministic even in the face of racy

thread spawning. Starting from the main thread, every thread spawn event is assigned an

ID equal to the number of children that have spawned from this thread so far child_id. A

single counter per thread keeps tracks of this information. Then, a DTI is generated as a

vector of child_ids from the main thread, down to the new thread. The main thread has a

DTI of [] (an empty list). As an example, the first thread spawned by the main thread is

assigned a DTI of [1], while the second great-grandchild of the main thread would have a

DTI of [1, 1, 2]. Therefore, the length of a DTI is equal to the depth of the thread tree.

Analogously, every channel receiver/sender pair is assigned a unique, deterministic channel

ID (DCI). The DCI consists of a (DTI, N), where N is a per-thread counter, which is increased

after generating a DTI.

DTIs are necessary for correctly replaying executions. Meanwhile DCIs are useful to de-

tect desynchronizations, debugging, as well as understanding complex program interactions

among threads, channels, and messages.
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4.4.2. Recording Events

Given a channel message of type T , we transform it to a tuple (T, DTI). Where DTI is the

DTI of the thread who sent this message. That is, a thread now sends its DIT down the

channel along with the message, this allows us to track which thread the message originally

came from.

During record mode, we let the program run with as little changes to the execution as

possible. When the program calls a channel function, we allow the function to go through,

and merely record some information necessary for replay later.

For all channel communication events, we record:

• Event Id: A per-thread integer that increases by one on every channel communication

event. This should be thought of as the logical time that an event occurred at.

• Sender ID: The DTI of the sender of a message.

• Event Type: send, receive, try_receive, select, etc.

• Data Type: The type of data sent down the channel, e.g. string, integer, bool, etc.

• Channel Flavor: The channel variant for an event, e.g. ipc-channel, bounded channel,

crossbeam channel, etc.

• Event Status: Possible return variant of an event (see more below).

• DCI: The ID(s) of the channel(s) involved in this event.

Notice our record log does not need to record the value of the data sent down the channel.

However, it may be useful to record the bytes sent down channels. This can further aid in

debugging or understanding when data values desynchronize.

Event status are the possible return variants of an event. For example, try_receive may

either: timeout, get a receive error, or successfully receive a value. In case of a success we
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record the DTI of the sender thread. The sender’s DTI is important for faithfully replaying

executions when there are multiple writers to the same channel.

Select operations have an ordering to their receiver set. Each receiver is given an index to

its position on the select, based on the order in which receivers were added to the set. On

select events, we record the index (or indices for multiple events) of the receiver(s) with

messages ready. Since receivers on a select are themselves MPSC channels. We also record

the DTI of the sender for all receivers which returned a message during a select.

Many of the items recorded above are not strictly necessary. Instead, the are useful for robust

logging (debugging), and detecting desynchronizations of executions. For users interested in

running lightweight RR in production environments, many of these values could be removed

based on a compile-time flag.

4.4.3. Replaying Events

While record mode tries to affect the program’s execution as little as possible, replaying

requires wrangling in the program to force it to execute the same as the recorded execution.

We may have to block threads and execute multiple channel receives per single channel

receive requested by the user. All these operations are not directly observable to the user, and

lightweight RR always maintains correct semantics with respect to the underlying channel

implementation. Therefore, any program that works with a channel implementation will

work equally well with lightweight RR.

Using (Sender ID, Event ID) we can deterministically identify an event for any thread. For

a given event, we consult the log to see what actions are expected for this event. We

compare the event type, DCI, and channel flavor to ensure we are still synchronized with

the execution. Otherwise, a desynchronization error is returned.

Next, we consult the event status. If the status was e.g. timeout, we don’t bother doing

the actual operation on the channel, and instead immediately return a timeout. Even if

the event status indicates the event succeeded, we may still not do the actual operation.
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Instead, no matter the actual receive events e.g. timeout_receive, try_receive, we implement

a rr_recv() as follows.

rr_recv() call the blocking receive() on the receiver directly. The blocking receive will even-

tually return a message of type (DTI, T). We compare the received DTI against the expected

DTI from the log. If they match, we have found the correct message to return. Otherwise,

this event came from another thread, so we add it to a per-receiver buffer of messages. We

loop on receive() until the correct event is found. Next time there is a call to rr_recv(), the

buffer is first checked for the expected event before looping on receive().

On select, we use the expected index/indices to retrieve the correct receiver(s) from the select

set and call rr_recv() on each receiver. Notice rr_recv takes care of buffering all “wrong”

messages from other senders, so the correct message is automatically returned.

We must be careful with our use blocking receive() as a desynchronization may cause the

thread to block forever. See Section 4.4.5.

4.4.4. Running Off the End of the Log

When replaying an execution, it is common to fall of the end of the log. That is, there is no

(DTI, N + 1) event in the log. Missing log entries usually mean that either: the program did

not reach this point of the execution during record, or a desynchronization has occurred.

The former can happen for programs that race between exiting and communicating through

channels. While one could argue this a source of nondeterminism outside the scope of

lightweight RR, doing so would render lightweight RR useless for many programs. Instead,

we handle end of the log events by blocking the thread on a conditional variable (this

simulates the behavior of the thread not reaching this event in the recorded execution). See

Section 4.4.5 for details on when this conditional variable is notified.

4.4.5. Handling Desynchronizations

We handle desynchronization events robustly by continuing to execute in a best effort mode

(See Section 4.8 for possible extensions). Once a desynchronization is detected, initial user
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input determines whether the program should error out or continue executing the program.

Programs desynchronize when there are sources of nondeterminism outside of what

lightweight RR handles. For example network IO, timers, randomness, etc. These other

sources of nondeterminism are outside the scope of this work. We expect many programs

to have other sources of nondeterminism. So lightweight RR must be robust to desynchro-

nization errors.

Once we detect that execution has failed. We switch from the replay method described

above, to merely doing the operation the user has asked for. This allows us to continue

the execution but with no determinism guarantees. We notify all threads blocked on the

end-of-log conditional variable, this unblocks these threads and they continue running on

desynchronization mode. Special care must be taken to flush any values buffered by our

rr_recv() operation.

If a program replay desynchronizes, threads blocking on receive() may never never return.

To avoid deadlocks, we use receive_timeout() instead of receive() in the implementation of

rr_recv(). If the timeout time elapses, we consider this a type of desynchronization error

and run the rest of the program in desync mode.

4.5. Implementation

We implemented lightweight RR as a Rust library rr-channel. Our Rust implementation

wraps three popular Rust libraries for channel communication: ipc-channel and crossbeam-

channel, and the Rust standard libray channel implementation. Rust does not have support

for dependency injection or inheritance, so users must swap all instances of the channel

library they are using to rr-channel. To make this process seamless, rr-channel exposes the

exact same API as ipc-channel and crossbeam-channel. Therefore, the only change needed is

editing the name of the dependency when it is imported5.
5This does not handle the case where a program dependency itself uses any of these channels. For our

evaluation, it was necessary to download the dependencies source code and manually patch the import. This
is a current limiation of our approach.
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We must assign DTI to all threads. So a user must also use our rr-channel thread spawn

function to ensure the thread receives a DTI. A program may not always be able to use our

thread spawn function: threads may spawn as in program dependencies outside the control

of the user. rr-channel handles this case by giving these threads a None DTI. Events are still

recorded and replayed for None DTI. However, if two threads, both with None DTIs are both

writing to the same channel, we cannot distinguish these them, so the execution may not

be deterministic. We print a warning to users if this case is detected.

It is straightforward for our rr-channel implementation to support any channel implemen-

tations as long as the underlying implementation supports one single channel operation:

try_receive().

4.6. Evaluation

For our evaluation, we integrate rr-channel into Servo. Servo is a highly complicated program

featuring a fully concurrent, message passing architecture. Servo represents a high target for

lightweight RR: as Servo uses many complicated channels, to send many messages among

its multitude of threads. Therefore, Servo is the perfect platform to stress-test lightweight

RR and get a proper sense on the limits of our approach.

Thanks to the design of rr-channel, lightweight RR integration was fairly simple. Even

though Servo is split into many libraries, with dozens of decoupled components. One day’s

worth of work is enough to have Servo using lightweight RR channels everywhere.

4.6.1. Reducing intermittent failures

To test the effectiveness of our approach we compiled a list of WPT tests known to fail

intermittently in Servo. Using Github API we fetched all GitHub Issues for Servo marked

as I-intermittent. We found 417 unique intermittently failing tests. We ran those 417 tests

100 times (baseline) to get the average number of times a test returned the following possible

statuses:

• expected: The test returned an expected outcome.
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• unexpected: The test returned an unexpected outcome.

• crash: Servo crashed unexpectedly while executing this test.

• timeout: The test timed out before returning.

Out of those 417 tests, only 43 displayed intermittent behavior. That is, they test would

change from one state above to another. 9/43 never returned “expected” so they were

ineligibly for lightweight RR.

To test our lightweight RR solution. We looped on the remaining 34 tests until we captured

an expected execution. 2 tests were discarded because we were unable to record an expected

execution after 100 tries. Even though these tests returned expected at least once in baseline.

Note for the 2 tests in the previous sentence, as well as the 9 tests that never returned

expected we could have recorded their unexpected executions as well, if the user is less

interested in recording the expected execution, and just wants more consistent test results.

The remaining 32 tests make up our experimental results. Using the expected execution

logs, we ran these tests 100 times in replay using our modified Servo.

Figure 4.1 shows the results for our 32 tests. The results are not great, but promising. While

lightweight RR does seem to improve results, modestly to greatly depending on the test,

sometimes lightweight RR actually returns less expected results. Many tests also failed to

run all the way and timed out every time, these represent the missing rr bars in Figure 4.1.

See Section 4.7 for discussion and interpretation of this results.

4.6.2. Performance Overhead

Lightweight RR only records channel communication events, a tiny subset of information

recorded by traditional RR methods. Therefor we expect performance overhead to be quite

smaller than traditional solutions.

We timed the our 32 tests using Servo’s testing infrastructure reported elapsed time per

test. The average time per tests is based off 100 executions of each test. Both baseline and
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Figure 4.1: Results of comparing baseline with lightweight RR. Tests where rr is higher than
the baseline represent cases where lightweight RR improved intermittent test’s expected
times. Missing orange bars represent a timeout during replay.
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Figure 4.2: Performance of lightweight RR over baseline. Missing entries represent tests
where rr-channels failed to run before timeout.

lightweight RR were measured in this manner. Figure 4.2 represents these results. As can

be seen in this graph, the performance is terrible. We have identified the possible source of

slowdown and hope to rerun the experiments soon.

4.6.3. Space overhead

For the evaluation, the logs were written out using a compact, binary serializer. Out of

30 recorded logs from our tests above, the median log size was 78.5KB. A more in depth

comparison would be needed to compare log sizes versus existing systems like rr. However,

we believe the log sizes are small enough to not add a storage burden, even for test suites

with tens of thousands of tests.

4.7. Discussion

The current evaluation results are disappointing to say the least. Here we discuss some of

the reasons why lightweight RR does not work well in its current state.

Several tests failed to run all the way in replay mode, and instead timed out. We attribute
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these failures to logic bugs in the implementation. We believe, with further implementation

effort, lightweight RR should never deadlock.

Servo is a complicated, highly concurrent program. Therefore, Servo represents a high mark

to hit for lightweight RR. Simpler applications may fare better as far as lightweight RR is

concerned.

Servo may be far too nondeterministic for lightweight RR to be useful: Servo may be desyn-

chronizing early on, so the rest of the program runs without much benefits from lightweight

RR. See Section 4.8 for proposed solutions to this problem. Servo has known sources of

nondeterminism we are not capturing. Some examples include rayon, a library for high-

performance data-parallelism. Since rayon threads are not spawned through our thread

spawn wrapper, these threads are not assigned DTIs. Therefore any message which comes

from a rayon thread cannot be properly determinized. We have observed such messages

coming from rayon threads. With further implementation it should be possible to assign

deterministic thread identifiers to Servo threads. Similarly, Servo uses Tokio library for

asynchronous programming. Threads spawned through Tokio are not determinized. Even

handling Tokio and rayon threads, Servo naturally has many nondeterministic IO operations.

Network traffic, disk IO, and timers, all contribute to nondeterministic executions in Servo.

It may just be the case that Servo is too nondeterministic in its current state to benefit from

our approach. Perhaps a combination of lightweight RR and some small modifications of

Servo components may yield better results.

4.8. Future Work

The current work just barely scratches the surface: providing an implementation and doing

a first attempt experiment. We believe with some iteration we could significantly increase

how well lightweight RR works.

Lightweight RR has many possible extensions and future work. Currently, when the re-

play execution desynchronizes, we merely fall back to executing the program natively. A
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more elaborate desynchronization recovery scheme could be robust to some desynchronized

events. Some threads could be desynchronized while other threads continue to run synchro-

nized. Similarly, we could look at real synchronization recovery by attempting to match the

execution back at a later point.

Once a desynchronization is detected, it is indicative of a source of nondeterminism in some

program thread. Using the current execution, and the log, it may be possible to help the

programmer narrow down and identify the source of nondeterminism.

When we detect a desynchronization, we could start recording this alternate program execu-

tion. Later the two executions could be compared to better understand why they diverged.

Furthermore, when considering continuous integration, and as programs evolve overtime,

we expect changing part of the code will have changes in the execution, therefore, as new

patches are tested for merging we could record the new executions, and use those for future

record and replay testing.

The log we record is a full record of all communications and thread topology for a given

execution. This log could create a visualization of threads, and channel communication for

the program execution. This is extremely useful to a developer as a visualization tool to

understand concurrent programs.

Servo is careful to use non-blocking, unbounded, channels. This helps Servo developers

reason about deadlock-freedom, as long as there is no cycles in the communications among

threads of Servo. Using the recorded logs, we could verify that cyclic dependencies don’t

exist for any given execution of Servo, thus increasing confidence in deadlock-freedom.

The evaluation is currently incomplete. More work is required to understand what kinds of

applications or tests benefit most from lightweight RR (if any). Performance is also currently

disappointing, work is needed to understand performance implications of lightweight RR.
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4.9. Addendum

In this section we cover some follow up work and thoughts after further research on

lightweight RR. Servo proved a hard program for diagnosing and evaluating the efficacy

of lightweight RR. This is due to several reasons: Servo is massive and complicated, running

scores of threads in parallel, Servo relies on a couple of Rayon parallelism and asynchronous

frameworks: rayon and tokio. These frameworks have their own parallelism schemes and

schedulers outside the current scope of lighweight RR, but they also present opportunities

for future extensions, see Section 4.9.1.

4.9.1. Future Directions and Extensions

In this section I present thoughts, challenges, and possible future extensions for this line of

work.

Narrowing Origin of Desynchronizations

The current implementation of Servo + Tivo suffers from a large amount of desynchro-

nization errors. These errors are extremely difficult to track down, even with the robust

logging currently present in our Tivo implementation. I believe an automated approach for

tracking the origin point of desynchronizations would be useful not only for debugging the

design and implementation of Tivo, but as a general tool for developers trying to squash

nondeterminism in their program.

Tivo holds all the information necessary to understand how channels are moved between

different threads and which channels send messages, from which thread, at any time. This

information can be used to generate a "topology" or graph of channel communication for a

program. Thinking about how messages flow through a program could help with automati-

cally identifying sources of divergence.

Tivo aims to be lightweight by only recording metadata associated with channel operations.

I believe it could also be useful to have a "verbose" Tivo mode, where Tivo also records the

data being sent through channels, this could help diagnose and detect divergences earlier.
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Generalizing Tivo Ideas

This chapter presents Tivo mainly in the context of channels. I believe these same ideas

could be generalized to other contexts to extend the usefulness of this approach.

Atomic locks are useful in any concurrent program, even when channels are used, Servo

still uses mutexes in several places. Ensuring deterministic access to data behind a lock is

currently beyond the scope of Tivo. We could extend Tivo to support deterministic thread

access in the same way we handle channel operations: during record, we use the DTI of a

thread to record the ordering of lock acquisition for threads. During replay, threads many

only access a lock in the same order as observed during replay. Threads that try acquiring

a lock before their time are blocked until it is their turn.

Asynchronous IO is a paradigm currently gaining a lot of traction. Most languages now

have some support for asynchronous IO. The Linux kernel recently gained a new API for

better asynchronous IO [44]. Many asynchronous IO language implementations provide a

programming model where programmers write async functions. These functions may be

paused at user-defined yield points, where they wait for some IO operation to complete. A

runtime is responsible for scheduling these async functions. The runtime also polls a lower

level IO queue where new IO events will arrive. These IO events are then handed back

to paused async functions, where they continue executing from their yield point. In some

languages like Rust, these async functions are known as futures or tasks.

This async programming model suffers from analogous nondeterminism problems to those

we have discussed in this chapter. I believe this is another context where the ideas pre-

sented by lightweight RR could help. We can slightly modify the async runtime to assign

a deterministic task identifier to every future. Then lightweight RR records the scheduling

of futures and creates a correspondence between an IO message and a specific future. In

replay, lightweight RR could ensure IO events are given to the correct future as the record

execution.

69



CHAPTER 5

Future Work

Based on our experience and familiarity with tracing and process-level manipulation mech-

anisms we outline future work directions. This section gives an overview of a a novel system

for automatic fault injection at system call sites. This system, currently named ChaOS, may

inject error codes at system call sites. We can used these faults to detect errors that are not

being handled by a program and report these edge cases to the user. Then, we overview the

key features, interfaces, and abstractions for a successor to ptrace.

5.1. ChaOS: Fault Injection at System Call Sites

5.1.1. Introduction

C and C++ remain the most popular languages for writing systems software. The Linux

programming interface is defined entirely in C. So using many Linux APIs requires using

these C interfaces. Meanwhile, the C type system is relatively weak and unexpressive. So

instead of function invariants being expressed via types, where they can be machine checked,

they are relegated deep into the man pages as documentation. Furthermore, C does not

feature any language-level error handling support. So C programmers often implement

their own ad-hoc error handling boilerplate. Without language or compiler support, C

error handling is tedious and error prone. Testing these error handlers is also difficult or

sometimes impossible. The lack of error handling support from the C language, combined

with the relative rarity of specific system calls failing may lead to hard to find bugs. To

address these shortcomings we propose ChaOS, a testing framework for system call failures.

ChaOS injects faults at system call sites to automatically root out bugs in software caused

by unhandled or buggy system call error handlers. This work is inspired by previous work

on dynamic analysis [45], fuzzing [1, 37], and debugging error handling code [64]. Working

at the system call level allows us to leverage low-level properties of programs in a novel way.

Finally, we leverage our insights on deterministic code execution to develop a fast and sound
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approach.

5.1.2. Background

System Call Failures

System calls failures are reported via the integer return value of the function call. A program-

mer may simply forget to check these return values. Developers are expected to familiarize

themselves with the nuanced and rare ways system calls can fail. See 5.1.2 for an example.

For example, a fork may fail due a ENOMEM, “failed to allocate the necessary kernel struc-

tures because memory is tight”. While a write to a file may fail due to ENOSPC “the device

containing the file referred to by fd has no room for the data”. These failures can be so rare

they never show up on testing environments or production systems for years.

Signals and System Calls

One example of this complicated design is blocking system calls. Any blocking system call

can be interrupted at any time by a signal: for example, when a user asks the program to

momentarily suspend, or any time a child process exits, a signal is delivered. If this happens,

the system call returns with a EINTR, and the user is expected to restart the system call

by calling it again. This is an unfortunate design quirk of Linux. So in practice, any

program that performs a blocking system call must be ready to handle a signal interrupting

a system call at any time. Anecdotally, it seems difficult to believe most developers handle

this correctly. Even high-level languages like Python have not always handled this behavior

correctly [41]. Thus we believe blocking system calls interrupted by signals are an ideal test

target for programs.

5.1.3. ChaOS: Fault Injection Testing for System Calls

ChaOS injects a fault at Sn, the nth system call executed by the current process. Every

system call has a different set of system call specific error codes. We plan to implement

handlers for most common system calls. Choosing which system call to target and which

errors to inject will be largely heuristic based. We suspect most programs do not handle

specific error codes and instead handle all possible errors “coarsely”, therefore the specific
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error we inject is less relevant. We plan to experimentally validate this.

Forking At Fault Injection Sites

Consider injecting a failure at Sn where the tracee successfully handles this fault injection by

reporting a message to the user and exiting. Now what if we wanted to test Sn+1? A naive

implementation of ChaOS would have to reexecute the entire program from the beginning.

This approach would likely be restrictively slow. Instead, before injecting the fault at Sn,

on the ptrace prehook event, we inject a fork system call. The fork system call creates an

identical copy of the process and all its resources (e.g. opened file descriptors). We leave the

original process P in a stopped state and inject the failure into the forked copy P’. The copy-

on-write (COW) semantics of fork makes this process both fast and lightweight. This will

likely be the most technically challenging part of the project. Care must be taken to avoid

various issues. Forking tends to be a mechanism with poor orthogonality [32]. Among many

issues, fork is not thread-safe. Forking creates a deep copy so executing P’ cannot modify

the memory P. P’ could still alter the state of the system via side effects. For example,

writing to a file or reading from a socket. These side effects are the result of system calls

execution. So our tracer intercepts system calls of P’ and ensures no side effect will affect

P. This way when P’ is terminated, we can continue executing P in the correct program and

system state.

Automatically Detecting Failures

Ultimately, ChaOS is designed to automatically detect unhandled system call failures. We

defer making guarantees or giving a precise definition of handling system call failures. This

is difficult to do as it is unclear what exactly it means for a program to properly “handle”

a system call failure. We propose an automatic approach while avoiding (or at least largely

minimizing) false positives. Let us consider the possible cases when injecting a fault at a

system call site which would normally succeed (See 5.1.3 for ensuring a system call would

succeed):

• Easy Case: The program reports an error and exits, we know this program successfully
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handled the system call failure.

• Easy Case: The program aborts unexpectedly (e.g segmentation fault) due to our fault

injection, we have found an unhandled system call error.

• Hard Case: The program continues executing. Did the program handle the error,

recover, and continued executing? Or did it fail to handle the error and is now running

in a state which the programmer did not intend?

We may handle the hard case as follows. As stated before, we inject faults into the forked

version of the process, P’. After the fault injection, we can step through P’ instruction-by-

instruction observing the values of the program counter (PC) register. At the same time

we also step through P (recall P was also stopped at Sn). P did not have a fault injected.

If the values of the PC register are the same for P and P’ we can conclude the program

did not do any handling of the fault. It is currently unclear how many instructions to

step through before concluding the error is unhandled. We expect to develop this heuristic

based on observation of real world programs. The soundness of this approach relies on our

previous work on deterministic program execution [82]. Given that P and P’ have identical

starting states (this is true by the semantics of the fork system call) stepping through both

process executions is a deterministic function of the initial starting state. So any differences

in program execution must be attributed to the fault injection.

System call Failures

Not all system call failures represent exceptional circumstances. It is routine for system calls

to return error results. System calls like stat and access are commonly used to probe around

the filesystem, e.g. attempting to locate where a shared library resides. For our automatic

detection of unhandled errors to work as described above, ChaOS should only inject failures

at system calls which would succeed in the untouched execution. We ensure we only inject

failures at succeeding system call sites as follows: We inject a fork to spawn P’ At this point

P is in a stopped state. We allow P to execute its Sn system call and stop Sn at the system

call post-hook event. In the post-hook event, we may observe the return value of Sn and
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only inject a fault into P’ if Sn succeeds.

Maintaining Program Invariants and Correctness

In general, programs may hold invariants we cannot know. Our fault injection may con-

tradict programmer assumptions and lead to impossible scenarios. For example, a program

executes the open system call to read some file f. Would it make sense to inject a fault on

the open system call? Both yes and no seem to be sensible answers:

• Yes: A correct program should always check and handle all exceptional system call

errors.

• No: This program may hold an invariant that the file should always exist. We have

broken program invariants by injecting a fault so the program is still correct under its

runtime assumptions.

While my personal opinion is that programs should handle even seemingly impossible sce-

narios, we will consult the relevant literature to see how this should be handled.

5.1.4. Evaluation

We will execute Chaos on a wide array of C programs. We are particularly interested in

targeting systems which are expected to have high reliability and robustness to exceptional

circumstances, such as databases and userspace filesystems. We hope to discover and validate

many real bugs with this approach.

5.2. Better System Call Interposition Mechanisms

In this section I argue the need for better system call interposition (interception) mecha-

nisms.

5.2.1. Current Approaches

Here we compare three popular approaches to Linux system call interposition:

LD_PRELOAD, ptrace, and in-kernel.
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LD_PRELOAD

LD_PRELOAD is an Linux environment variable specifying ELF shared objects to be

loaded before all others [26]. This can be used to override functions which are dynamically

linked into a program. For example, we want to trace every use of the open standard C

library function in some program ./foo. The open function is dynamically loaded into ./foo

via the shared object libc.so. We can create our own shared object, e.g. tracing.so which

defines an open function with the same signature as the standard library version. Our new

open function can execute arbitrary code to book-keep the number of function invocations,

before executing the actual open system call.

Our tracing code can be injected by executing: LD_PRELOAD=tracing.so ./foo. In this sec-

tion, we will use the term LD_PRELOAD as a shorthand for the LD_PRELOAD injection

approach.

There are several advantages to LD_PRELOAD that make it widely used (even though it

suffers from fatal drawbacks):

• Ease of use: it is straightforward to get something basic working quickly.

• Familiarity: The user is more likely to be familiar with C standard library functions

and the Linux programming interface. This provides a familiar programming model

for users.

• Source/Binary Requirements: LD_PRELOAD does not require any source code

changes, recompilation, and will work on unmodified code. Only a dynamically linked

binary is required.

• Performance: LD_PRELOAD adds no additional overhead beyond any custom code

injected by the user. Our custom functions work just like any other dynamically loaded

function invocation. This code is executed directly in the process address space and

requires no additional context switches or system calls.

I believe the LD_PRELOAD approach should be avoided in every but the most trivial
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use-cases as it suffers from several issues:

• Mismatch between C standard library and systems calls: C standard library

functions like open, printf, fork are casually referred to as system calls. This is in-

accurate and can lead to issues in situations with LD_PRELOAD. These functions

should be thought of more as high-level6 wrappers around actual OS system calls. For

example, the printf function eventually calls the write system call.

The C standard library often provides various convenience functions which all eventu-

ally call the same system call. We must ensure we are intercepting all such functions.

• Statically Linked Binaries: LD_PRELOAD only works for functions which are

dynamically linked. If we are dealing with a statically linked binary, this approach

will not work at all.

• Use of C Standard Library: LD_PRELOAD hinges on the erroneous assumption

that languages and runtimes are implemented on top of the C standard library and

libc.so. Go programs cannot be traced using LD_PRELOAD since the Go runtime

calls system calls directly instead of using libc.so. Additionally, any code that calls

system calls directly, e.g. via assembly, will not be traced by LD_PRELOAD.

These issues mean LD_PRELOAD is not a full-proof approach and its tracing may be

missing system calls.

Ptrace

Please see Section 1.4 for an overview of the Linux ptrace API. ptrace provides the following

advantages:

• OS-Based Interception: The OS handles interception of system calls and other

IO events. This provides a full-proof approach which cannot be circumvented by

programs.

• System Call Interface: Ptrace works at the system call level, the lowest layer for

userspace programs. So ptrace works regardless of the language, technology, or runtime
6"High-level" being a relative term in this context.
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of the program7.

• System call filtering: Ptrace allows us to filter only those system calls we are

interested in. The overhead of ptrace is proportional to the number of IO events

intercepted [82]. Filtering allows us to specify the minimal set of system calls required

for our use case.

• Beyond System Calls: Ptrace notifies us of IO events beyond just system calls.

These events include: signals, process/thread spawn and exit, and calls to execve.

These additional events are useful for program tracing.

• Process Manipulation: ptrace provides powerful process manipulation mechanisms.

Ptrace allows for arbitrary reads and writes to the memory of the tracee. System calls

may be emulated, substituted, injected, or modified by the tracer.

• Dynamic Attachment and Detachment: Ptrace allows the tracer to attach to

arbitrary processes at any time. This is useful for tracing already running pro-

cesses. Tracers may attach or detach dynamically to processes. This is in contrast to

LD_PRELOAD which requires attaching at program execution time.

• Centralized Tracing: A single tracer may trace an arbitrary number of threads

and processes. This is useful when tracing multi-threaded or multi-process programs.

We can have a single centralized tracer which aggregates information from multiple

tracees.

Ptrace has several issues:

• Complicated API and Setup: Ptrace’s API and setup are difficult. This is most

likely due to the complexity of the system call, and the archaic feel of many parts of

Linux. There is also a general lack of documentation: The man page is not beginner

friendly. All ptrace examples available on the web are simple and only handle the most

trivial tracing needs.

Ptrace must be used in conjunction with seccomp [27] to support system call filtering.
7One notable exception is VDSO system calls, in practice this is not a major issue.

77



This adds to the complexity. Even a minimal working ptrace + seccomp program

requires a few hundred lines of boilerplate.

• Low-Level Interface: Ptrace requires knowledge of low-level program execution,

specifically: familiarity with the Linux programming interface, systems programming,

and the Linux system call ABI.

To trace system calls events, we must first perform a PTRACE_GETREGS operation.

This operation populates a struct representing the register state of the tracee. This

struct consists of untyped values represented as 64-bit integers. Interpreting this struct

requires knowledge of that specific system call’s API and the Linux system call ABI

8. The register values then need to be cast into the correct data type or pointer

type. These pointers refer to the tracee’s address space, but can be dereferenced via

PTRACE_PEEK or the process_vm_read system call. Thus, this interface fails to

abstract over implementation details, adding cognitive overhead to users.

• Difficult Programming Model: Ptrace (ab)uses the parent-child process relation-

ship. Under the hood, a tracer becomes the parent of a tracee process. This enables

the use of waitpid to receive notification of incoming ptrace IO events.

Multiple tracees (additional threads or processes traced by our tracer) could be running

in parallel. This is beneficial to amortize the overhead of ptrace, as we can serve events

from one tracee while waiting for events from another. Therefore, ptrace IO event can

arrive from any tracee at any given time.

Often, it is useful to handle systems call events in a sequential manner. Consider the

following example: We want to keep track of all file deletion events by a tracee, and

we want to know the inodes of deleted files. To implement this with ptrace we would

execute the following operations:

1. Intercept call to the unlink system call prehook.

2. Read the first argument to unlink as a string. This is the path of the file to be

deleted.
8Notice the function signature between a C standard library wrapper and the system call API often

differs in subtle ways.
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3. Before allowing the unlink through, we inject a stat system call into the tracee to

get the inode for this file 9.

4. Await for the posthook of stat.

5. Allow the unlink to execute.

6. Await the posthook for unlink to observe the return value.

Logically, these operations happen sequentially. We would like our code to reflect this.

However, steps 3 and 6 require awaiting for posthook events. We could have arbitrarily

many ptrace IO events from other tracees before the posthook events arrive. Ptrace

does not allow us to wait for this specific event, we must serve events in their arrival

order 10.

This is a real example from the Dettrace project. Dettrace handles this problem by

having a per-tracee local state. On every IO event, we pop the corresponding state

for that thread or process. Any time we areawaiting a specific IO event, we save the

state for that tracee; In anticipation for receiving a IO event from a different tracee.

While this approach worked, it was error prone as it was up to the user to ensure

they pushed/popped the state. It also broke the sequential logical workflow of this

operation. Futhermore, we could not factor out this code as a function, as we needed

to return to the main IO event handler loop at any time.

Lastly, ptrace does not keep track of pre-hook and post-hook events per process or

threads. It is up to the tracer (us) to manually remember the state of the tracee.

The tracer may become desynchronized on the current ptrace event. This happens

when the programmer has different expectations of what the next event should be,

most commonly pre-hook and post-hook events. This leads to hard to diagnose, and

unhelpful ptrace IO errors 11.

• High Overhead: Ptrace works on a tracer/tracee model. The tracer runs as a sepa-
9We must do this before the unlink, if the file is deleted, it will be too late for us to read the inode!

10We could instruct waitpid to wait on the PID/TID of this specific tracee, but then we cannot serve IO
events which are ready from other tracees.

11The OS knows the current ptrace IO event we are handling, it is not clear why it does include pre-hook
or post-hook information
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rate process which awaits new notifications from the OS. Every time a relevant tracing

events is executed, the tracee is put in a stopped state. Communicating between two

processes in this manner incurs considerable overhead. Ptrace’s overhead is directly

proportional to the number of IO events intercepted [82]. IO-bound program may

execute several times slower while being traced. CPU-bound workloads experience far

better performance overheads. Based on our experiments, between 1%-2% on average.

• Expensive IO: Beyond the cost of stopping the tracee and context switching to the

tracer, most ptrace operations require a system call for reading the state or memory

of the tracee. Since the tracer operates on a different address space as the tracer,

dereferencing any pointer requires further ptrace system calls. This additional IO

likely accounts for a significant portion of ptrace’s overhead.

Kernel

Previous work [47, 67] opts to trace in-kernel. These systems are making OS modifications

beyond just tracing, so the kernel is a natural place for tracing system call events. This

approach is quite fast, we have to enter kernel-space to service the system call anyways, so

there is no additional overhead beyond any custom code that must be executed.

The kernel-modification approach comes with significant drawbacks:

• Kernel modifications are an intrusive change to any OS. For security and stability

reasons, it is unlikely a modified kernel will be used in production systems. The

majority of proposals are unlikely to be merged into the mainline Linux kernel. If a

project relies on the low-overhead of an in-kernel implementation, their approach may

never be useful in production. Rendering the viability of their research questionable.

• This approach relies on the internal kernel code instead of going through a public API.

This approach usually pins the code to a specific kernel version. The code quickly

becomes outdated as new kernel versions make changes to these internals.

• Kernel programming is a highly-specialized skill event among systems programmers

and operating systems researchers. Most people, including myself, lack the deep do-
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main knowledge for this approach.

5.2.2. Designing Better Systems

Given the issues with existing approaches, I believe there is a need for better mechanisms

to fill this niche. In this section I outline some features a better system call interposition

mechanism would have, as well as current work in this area.

Next Generation Tracing

In this section I outline the requirements and features a next generation solution should

implement.

• Better Abstractions: I argue that system calls are actually the wrong level of

abstraction for tracing mechanisms. System calls are an implementation detail of

executing programs. I believe most users are interested in tracing higher level IO

operations of programs. For example, instead of knowing the tracee executed a open

system call with a certain set of flags, the user would rather work with a higher level

concepts such as a FileOpened operation. There are many system calls which perform

similar operations depending on the arguments, e.g. open with the O_CREAT, opentat,

opentat2, creat, all perform similar function. Most users care less about the exact

system call and more about the IO event, e.g. FileCreated. ProcessCache (See section

3) implements these concepts in-code to abstract over raw system call events.

• Portability: An ideal solution would be portable across different operating systems.

This is probably the hardest feature to have. Different operating systems have dif-

ferent system calls making this infeasible. Using an intermediate, higher abstracted

representation as described in the former bullet point would make this feasible.

• Low-Overhead: Overhead is an important factor for the feasibility of techniques

built on top of system call interposition. A full-proof and low-overhead tracing would

be be the best of all worlds. I believe such a system would require a userspace and

in-process approach. We already see this trend on other areas of OS evolution [102],

and I believe tracing should be done in userspace without the cost of the OS.
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• Programming Model: As described in the Section 5.2.1, the current ptrace pro-

gramming model is difficult and error prone. A more intuitive programming model

could help cut through the complexity. Asynchronous programming has been popu-

larized in recent years. I believe a asynchronous IO API is an excellent programming

model for IO event tracing. See Section 5.2.2 for a detailed description.

Syscall User Dispatch

Progress is being made in this area. Linux now supports Syscall User Dispatch (SUD)

[20]. Syscall User Dispatch is designed mainly to handle the use case of Wine and Proton:

emulating system calls for a certain region of the process’ address space. SUD allows filtering,

trapping, and emulating system calls in userspace. SUD utilities a "selector" byte mapped

to the application’s memory. This allows for quick enable/disable of system call redirection

via a write to memory. Notice this write does not require a mode switch to kernel space.

When the selector is enabled, any system call performed in the application will generate a

SIGSYS signal, which can be caught and handled in-process.

Additionally, SUD alows us to specify memory regions where any system call executed will

not be intercepted, regardless of the state of the selector. This is useful for allowing fast

system call execution, e.g. mapping libc into this memory region.

I believe the SUD mechanism could be used to engineer a faster system call interception

mechanism than those currently available. SUD would not suffer from the shortcomings of

other approaches. I expected the overhead to be low, as it works in-process. According

to the documentation [20], handling signals on most architectures incurs a high cost but I

expect this approach to be faster than other full proof solutions, i.e. ptrace. A SUD-based

approach would work for all systems unlike the LD_PRELOAD approach. Reading and

writing to the tracee’s address space would be as fast as a pointer derefernce since the tracer

shares the same address space as the tracee.

Note, this approach would not be suitable for sandboxing or hardening environments, as the

82



tracee runs in the same address space as the tracee.

Higher-Level Tracer On Top of Ptrace

We don’t need a new in-kernel implementation to gain many of the benefits outlined above.

It is possible to build a better higher-level interface on top of the ptrace. This is akin to the

libseccomp library which makes it palpable to work with seccomp [8].

We implement some of these ideas for the ProcessCache project. ProcessCache implements

a higher-level interface around ptrace, we will refer to this wrapper library as libptrace.

libptrace is entirely written in Rust providing high-level methods for all ptrace operations.

For example, reading a string from the tracee is as simple as calling fn read_c_string(&self,

address: *const c_char) -> Result<String>, where address is the pointer address in the tracee.

Futhermore, we can read arbitrary values from the tracee via read_value<T>(&self, address:

*const T) -> Result<T>. The type parameter T, and the sizeof(T) is automatically inferred

by the compiler based on the context, neat!

libptrace abstracts over the underlying ptrace IO events by providing a higher-level enumer-

ation. See 5.1 for the exhaustive list of events.

libptrace features a custom asynchronous runtime for handling ptrace IO events. This ab-

stracts over the problem previously outlined of ptrace IO events arriving in any order, at

any time. libptrace allows us to write code in a sequential matter while still allowing the

runtime to handle events as soon as they are ready. See Figure 5.2.

The libptrace’s implementation extends this concept beyond just handling a single system

call. Every process traced by ProcessCache is handled by an asynchronous function which

persists for the lifetime of that process. These asynchronous functions are paused at user-

defined yield points via .await. The runtime is responsible for scheduling the next asyn-

chronous function to run based on which ptrace IO event is received. This allows the

programmer to write code to handle a single process/thread, the asynchrony is handled by

the runtime. Based on our experience with ProcessCache this model works quite well.
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pub enum TraceEvent {
Exec ( Pid ) ,
/// This i s a stop be f o r e the ac tua l program ex i t , t h i s
/// i s our l a s t chance to ptrace qu e r i e s on the t r a c e e .
After t h i s event , we expect a r e a l program ex i t .
PreExit ( Pid ) ,
Prehook ( Pid ) ,
/// This i s the parent ’ s PID , not the ch i l d .
Fork ( Pid ) ,
Clone ( Pid ) ,
VFork ( Pid ) ,
Posthook ( Pid ) ,
ProcessExi ted (Pid , i 32 ) ,
Rece ivedS igna l ( Pid , S i gna l ) ,
K i l l edByS igna l ( Pid , S i gna l ) ,

}

Figure 5.1: libptrace TraceEvent enumeration. libptrace abstracts over the underlying ptrace
IO events.

async fn handle_unlink ( execut ion : _, t r a c e r : _) {
l e t r eg s = t r a c e r . g e t_ r e g i s t e r s ( ) ;
l e t fu l l_path = get_ful l_path ( execut ion , name , t r a c e r ) ? ;

l e t r eg s = t r a c e r . posthook ( ) . await ;
// Get re turn value o f system c a l l .
l e t ret_val = reg s . r e t v a l : : < i32 >() ;
. . .

}

Figure 5.2: libptrace allows us to write code in a sequential style. The tracer object is a
handle to various high-level tracing methods. The Execution object holds the context of the
current process being executed. The .await call may yield the execution of this function until
the posthook event arrives. Arbitrarily many IO events may arrive and be handled by the
libptrace runtime for other processes or threads in the meantime. When the specific post-
hook we are waiting for arrives, the runtime will schedule our async function and continue
executing the code from where we left off.
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CHAPTER 6

Conclusion

This dissertation overviews techniques for low-level process manipulation. We argue process

manipulation is a useful and generalizable technique with many applications in software

systems. Our introduction gives an overview of program tracing and low-level process ma-

nipulation. Then, we summarize system call interposition and the Linux ptrace API. We

show how the low-level primitive operations provided by ptrace can be used to build useful,

reusable program manipulation constructs such as arbitrary system call injection, system

call replay, and system call modification.

Afterwards, we see an application of low-level process manipulation towards solving an

existing issue in software systems: software reproducibility. We describe the design and

implementation of DetTrace, which provides a new reproducible container abstraction. Det-

Trace automatically provides reproducibility for software builds, bioinformatics processing

and ML workflows without requiring any changes to the hardware, OS, or application code.

DetTrace shows the utility of low-level process manipulation by implementing a dynamic

determinism enforcement mechanism on top of it. Process manipulation is orthogonal to

other OS-level techniques. So it can be readily combined with other OS-level facilities, e.g.

containerization. Dettrace further implements a userspace, reproducible, thread and process

scheduler via ptrace.

DetTrace has several avenues for future work. DetTrace guarantees reproducible execution

of threads by sequentializing thread execution within a process. This method does not

always work, for example the Java virtual machine deadlocks during garbage collection under

DetTrace. Furthermore, sequentializing thread execution incurrs high performance overhead

due to the loss of parallel execution of threads. This motivates two avenues for future work:

First, Dettrace could relax constraints such as thread sequentializing via command line

options when the user knows a priori that thread execution will not cause issues. This could
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be generalized to other areas of DetTrace to allow users to pick and choose which parts of

DetTrace’s determinism enforcement their application requires. This would minimize the

performace cost incurred by our dynamic determinism enforcement while simultaneously

allowing more programs to execute under DetTrace. Second, DetTrace could look into

generalizing its methods to support parallel and deterministic thread execution. DetTrace

may be combined with relevant work in this area.

DetTrace motivated many ideas and future work directions, among the the ProcessCache

project. ProcessCache attempts to automatically cache and skip unnecessary process-level

computations. ProcessCache traces the execution of programs to determine the program’s

input and outputs, caching the outputs. When this program is re-executed, ProcessCache

will skip any processes whose inputs have not changed and use the cached output instead.

ProcessCache represents the most advance use of the process manipulation techniques we

have developed. Its implementation is informed by experience working on DetTrace. Pro-

cessCache in turn has informed the future work section, specially Section 5.2.2.

There are several avenues for future work as a follow up to ProcessCache:

• ProcessCache could be generalized to support multiple users within the same machine,

this would allow the cache to be shared and used by multiple users.

• An even larger leap would be to make ProcessCache fully distributed allowing cached

results to be shared across machines and users, a la Google’s distributed builds infras-

tructure [5].

• ProcessCache currently hashes file contents to detect if file contents have changed.

This incurs a non-trivial performance penalty. ProcessCache can fall back to using

mtimes on files for faster file change detection. mtimes do not always reliable and are

not portable across machines. A better way to detect file changes would be to rely on

file change mechanisms like inotify. ProcessCache could be modified to have a daemon

responsible for keeping track of file changes.
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Furthermore, ProcessCache is quite the engineering effort and requires further work to be

turned into a useful production system. I suspect interesting and novel research questions

would arise during this implementation effort.

Tracing is useful at many levels of the software stack. Working strictly with OS-level tracing

and process manipulation can create difficulties. We find this is not always the right level of

abstraction. This motivated Tivo and lightweight record-and-replay (RR). Lightweight RR

is a hybrid approach between heavyweight, fully deterministic systems, and no determinism

enforcement. Lightweight RR is designed to empirically lower the amount of intermittent

test failures in a program’s test suite, while enjoying minimal performance overhead and

record-log sizes. Lightweight RR has exciting and promising future work avenues beyond

the just our current use in Tivo. With more work, I believe lightweight RR could prove to

be a useful tool for the development and debugging of concurrent systems and asynchronous

programming models.

Finally, the future work chapter sketches the design for a novel system for automatic fault

discovery. ChaOS utilizes low-level process manipulation techniques developed in our other

work to implement a fault injection tool for system calls. ChaOS proposes using many of the

process manipulation techniques developed during the course of my PhD. Including system

call modification and system call injection. Specifically, ChaOS injects fork/clone system

calls to make copies of the tracee. This allows us to effectively save the state of the currently

executing tracee.

Our future work also overviews different tracing and process manipulation implementations

commonly used. We compare advantages and shortcomings of each approach. Then, we pro-

pose key features next generation tracing and process manipulation implementation should

support. It is unclear if any implementation could satisfy all the key features at the same

time. As a stop gap, I propose a higher-level library, libptrace. libptrace is partially inspired

by libseccomp a higher-level library build on top of Linux seccomp. libseccomp abstracts over

many idiosyncrasies and low-level details of seccomp, creating a more accessible and useful
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library. The design and implementation of libptrace has similar goals: providing a high-level

easy to use tracing and process manipulation library built on top of ptrace. libptrace pro-

vides a asynchronous IO abstaction allowing code to be written in a sequential manner. It

is my hope higher-level and abstracted tracing and process manipulation mechanism will

bring accessibility and allow more people to use these powerful techniques.
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